Step |
Hyp |
Ref |
Expression |
1 |
|
selberglem1.t |
|
2 |
|
reex |
|
3 |
|
rpssre |
|
4 |
2 3
|
ssexi |
|
5 |
4
|
a1i |
|
6 |
|
fzfid |
|
7 |
|
elfznn |
|
8 |
7
|
adantl |
|
9 |
|
mucl |
|
10 |
8 9
|
syl |
|
11 |
10
|
zred |
|
12 |
11
|
recnd |
|
13 |
|
fzfid |
|
14 |
|
elfznn |
|
15 |
14
|
adantl |
|
16 |
15
|
nnrpd |
|
17 |
16
|
relogcld |
|
18 |
17
|
resqcld |
|
19 |
13 18
|
fsumrecl |
|
20 |
|
simplr |
|
21 |
19 20
|
rerpdivcld |
|
22 |
21
|
recnd |
|
23 |
|
simpr |
|
24 |
7
|
nnrpd |
|
25 |
|
rpdivcl |
|
26 |
23 24 25
|
syl2an |
|
27 |
26
|
relogcld |
|
28 |
27
|
resqcld |
|
29 |
|
2re |
|
30 |
|
remulcl |
|
31 |
29 27 30
|
sylancr |
|
32 |
|
resubcl |
|
33 |
29 31 32
|
sylancr |
|
34 |
28 33
|
readdcld |
|
35 |
34 8
|
nndivred |
|
36 |
1 35
|
eqeltrid |
|
37 |
36
|
recnd |
|
38 |
22 37
|
subcld |
|
39 |
12 38
|
mulcld |
|
40 |
6 39
|
fsumcl |
|
41 |
12 37
|
mulcld |
|
42 |
6 41
|
fsumcl |
|
43 |
|
2cn |
|
44 |
|
relogcl |
|
45 |
44
|
adantl |
|
46 |
45
|
recnd |
|
47 |
|
mulcl |
|
48 |
43 46 47
|
sylancr |
|
49 |
42 48
|
subcld |
|
50 |
|
eqidd |
|
51 |
|
eqidd |
|
52 |
5 40 49 50 51
|
offval2 |
|
53 |
40 42 48
|
addsubassd |
|
54 |
|
rpcnne0 |
|
55 |
54
|
adantl |
|
56 |
55
|
simpld |
|
57 |
11
|
adantr |
|
58 |
57 18
|
remulcld |
|
59 |
13 58
|
fsumrecl |
|
60 |
59
|
recnd |
|
61 |
55
|
simprd |
|
62 |
6 56 60 61
|
fsumdivc |
|
63 |
18
|
recnd |
|
64 |
13 63
|
fsumcl |
|
65 |
55
|
adantr |
|
66 |
|
divass |
|
67 |
12 64 65 66
|
syl3anc |
|
68 |
13 12 63
|
fsummulc2 |
|
69 |
68
|
oveq1d |
|
70 |
22 37
|
npcand |
|
71 |
70
|
oveq2d |
|
72 |
12 38 37
|
adddid |
|
73 |
71 72
|
eqtr3d |
|
74 |
67 69 73
|
3eqtr3d |
|
75 |
74
|
sumeq2dv |
|
76 |
6 39 41
|
fsumadd |
|
77 |
62 75 76
|
3eqtrrd |
|
78 |
77
|
oveq1d |
|
79 |
53 78
|
eqtr3d |
|
80 |
79
|
mpteq2dva |
|
81 |
52 80
|
eqtrd |
|
82 |
|
1red |
|
83 |
6 28
|
fsumrecl |
|
84 |
83 23
|
rerpdivcld |
|
85 |
84
|
recnd |
|
86 |
|
2cnd |
|
87 |
|
2nn0 |
|
88 |
|
logexprlim |
|
89 |
87 88
|
mp1i |
|
90 |
|
2cnd |
|
91 |
|
rlimconst |
|
92 |
3 90 91
|
sylancr |
|
93 |
85 86 89 92
|
rlimadd |
|
94 |
|
rlimo1 |
|
95 |
93 94
|
syl |
|
96 |
|
readdcl |
|
97 |
84 29 96
|
sylancl |
|
98 |
40
|
abscld |
|
99 |
97
|
recnd |
|
100 |
99
|
abscld |
|
101 |
39
|
abscld |
|
102 |
6 101
|
fsumrecl |
|
103 |
6 39
|
fsumabs |
|
104 |
|
readdcl |
|
105 |
28 29 104
|
sylancl |
|
106 |
105 20
|
rerpdivcld |
|
107 |
6 106
|
fsumrecl |
|
108 |
38
|
abscld |
|
109 |
12 38
|
absmuld |
|
110 |
12
|
abscld |
|
111 |
|
1red |
|
112 |
38
|
absge0d |
|
113 |
|
mule1 |
|
114 |
8 113
|
syl |
|
115 |
110 111 108 112 114
|
lemul1ad |
|
116 |
108
|
recnd |
|
117 |
116
|
mulid2d |
|
118 |
115 117
|
breqtrd |
|
119 |
109 118
|
eqbrtrd |
|
120 |
65
|
simpld |
|
121 |
120 38
|
absmuld |
|
122 |
120 22 37
|
subdid |
|
123 |
65
|
simprd |
|
124 |
64 120 123
|
divcan2d |
|
125 |
34
|
recnd |
|
126 |
8
|
nnrpd |
|
127 |
|
rpcnne0 |
|
128 |
126 127
|
syl |
|
129 |
|
divass |
|
130 |
1
|
oveq2i |
|
131 |
129 130
|
eqtr4di |
|
132 |
|
div23 |
|
133 |
131 132
|
eqtr3d |
|
134 |
120 125 128 133
|
syl3anc |
|
135 |
124 134
|
oveq12d |
|
136 |
122 135
|
eqtrd |
|
137 |
136
|
fveq2d |
|
138 |
|
rprege0 |
|
139 |
|
absid |
|
140 |
20 138 139
|
3syl |
|
141 |
140
|
oveq1d |
|
142 |
121 137 141
|
3eqtr3d |
|
143 |
8
|
nncnd |
|
144 |
143
|
mulid2d |
|
145 |
|
rpre |
|
146 |
145
|
adantl |
|
147 |
|
fznnfl |
|
148 |
146 147
|
syl |
|
149 |
148
|
simplbda |
|
150 |
144 149
|
eqbrtrd |
|
151 |
20
|
rpred |
|
152 |
111 151 126
|
lemuldivd |
|
153 |
150 152
|
mpbid |
|
154 |
|
log2sumbnd |
|
155 |
26 153 154
|
syl2anc |
|
156 |
142 155
|
eqbrtrrd |
|
157 |
108 105 20
|
lemuldiv2d |
|
158 |
156 157
|
mpbid |
|
159 |
101 108 106 119 158
|
letrd |
|
160 |
6 101 106 159
|
fsumle |
|
161 |
6 105
|
fsumrecl |
|
162 |
|
remulcl |
|
163 |
146 29 162
|
sylancl |
|
164 |
83 163
|
readdcld |
|
165 |
28
|
recnd |
|
166 |
|
2cnd |
|
167 |
6 165 166
|
fsumadd |
|
168 |
|
fsumconst |
|
169 |
6 43 168
|
sylancl |
|
170 |
138
|
adantl |
|
171 |
|
flge0nn0 |
|
172 |
|
hashfz1 |
|
173 |
170 171 172
|
3syl |
|
174 |
173
|
oveq1d |
|
175 |
169 174
|
eqtrd |
|
176 |
175
|
oveq2d |
|
177 |
167 176
|
eqtrd |
|
178 |
|
reflcl |
|
179 |
146 178
|
syl |
|
180 |
29
|
a1i |
|
181 |
179 180
|
remulcld |
|
182 |
|
flle |
|
183 |
146 182
|
syl |
|
184 |
|
2pos |
|
185 |
29 184
|
pm3.2i |
|
186 |
185
|
a1i |
|
187 |
|
lemul1 |
|
188 |
179 146 186 187
|
syl3anc |
|
189 |
183 188
|
mpbid |
|
190 |
181 163 83 189
|
leadd2dd |
|
191 |
177 190
|
eqbrtrd |
|
192 |
161 164 23 191
|
lediv1dd |
|
193 |
105
|
recnd |
|
194 |
6 56 193 61
|
fsumdivc |
|
195 |
83
|
recnd |
|
196 |
56 86
|
mulcld |
|
197 |
|
divdir |
|
198 |
195 196 55 197
|
syl3anc |
|
199 |
86 56 61
|
divcan3d |
|
200 |
199
|
oveq2d |
|
201 |
198 200
|
eqtrd |
|
202 |
192 194 201
|
3brtr3d |
|
203 |
102 107 97 160 202
|
letrd |
|
204 |
98 102 97 103 203
|
letrd |
|
205 |
97
|
leabsd |
|
206 |
98 97 100 204 205
|
letrd |
|
207 |
206
|
adantrr |
|
208 |
82 95 97 40 207
|
o1le |
|
209 |
1
|
selberglem1 |
|
210 |
|
o1add |
|
211 |
208 209 210
|
sylancl |
|
212 |
81 211
|
eqeltrrd |
|
213 |
212
|
mptru |
|