Metamath Proof Explorer


Theorem selberglem3

Description: Lemma for selberg . Estimation of the left-hand side of logsqvma2 . (Contributed by Mario Carneiro, 23-May-2016)

Ref Expression
Assertion selberglem3 x + n = 1 x d y | y n μ d log n d 2 x 2 log x 𝑂1

Proof

Step Hyp Ref Expression
1 fvoveq1 n = d m log n d = log d m d
2 1 oveq1d n = d m log n d 2 = log d m d 2
3 2 oveq2d n = d m μ d log n d 2 = μ d log d m d 2
4 rpre x + x
5 ssrab2 y | y n
6 simprr x + n 1 x d y | y n d y | y n
7 5 6 sselid x + n 1 x d y | y n d
8 mucl d μ d
9 7 8 syl x + n 1 x d y | y n μ d
10 9 zcnd x + n 1 x d y | y n μ d
11 elfznn n 1 x n
12 11 nnrpd n 1 x n +
13 12 ad2antrl x + n 1 x d y | y n n +
14 7 nnrpd x + n 1 x d y | y n d +
15 13 14 rpdivcld x + n 1 x d y | y n n d +
16 relogcl n d + log n d
17 16 recnd n d + log n d
18 15 17 syl x + n 1 x d y | y n log n d
19 18 sqcld x + n 1 x d y | y n log n d 2
20 10 19 mulcld x + n 1 x d y | y n μ d log n d 2
21 3 4 20 dvdsflsumcom x + n = 1 x d y | y n μ d log n d 2 = d = 1 x m = 1 x d μ d log d m d 2
22 elfznn m 1 x d m
23 22 3ad2ant3 x + d 1 x m 1 x d m
24 23 nncnd x + d 1 x m 1 x d m
25 elfznn d 1 x d
26 25 3ad2ant2 x + d 1 x m 1 x d d
27 26 nncnd x + d 1 x m 1 x d d
28 26 nnne0d x + d 1 x m 1 x d d 0
29 24 27 28 divcan3d x + d 1 x m 1 x d d m d = m
30 29 fveq2d x + d 1 x m 1 x d log d m d = log m
31 30 oveq1d x + d 1 x m 1 x d log d m d 2 = log m 2
32 31 oveq2d x + d 1 x m 1 x d μ d log d m d 2 = μ d log m 2
33 32 2sumeq2dv x + d = 1 x m = 1 x d μ d log d m d 2 = d = 1 x m = 1 x d μ d log m 2
34 21 33 eqtrd x + n = 1 x d y | y n μ d log n d 2 = d = 1 x m = 1 x d μ d log m 2
35 34 oveq1d x + n = 1 x d y | y n μ d log n d 2 x = d = 1 x m = 1 x d μ d log m 2 x
36 35 oveq1d x + n = 1 x d y | y n μ d log n d 2 x 2 log x = d = 1 x m = 1 x d μ d log m 2 x 2 log x
37 36 mpteq2ia x + n = 1 x d y | y n μ d log n d 2 x 2 log x = x + d = 1 x m = 1 x d μ d log m 2 x 2 log x
38 eqid log x d 2 + 2 - 2 log x d d = log x d 2 + 2 - 2 log x d d
39 38 selberglem2 x + d = 1 x m = 1 x d μ d log m 2 x 2 log x 𝑂1
40 37 39 eqeltri x + n = 1 x d y | y n μ d log n d 2 x 2 log x 𝑂1