Metamath Proof Explorer


Theorem selbergr

Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.2 of Shapiro, p. 428. (Contributed by Mario Carneiro, 16-Apr-2016)

Ref Expression
Hypothesis pntrval.r R = a + ψ a a
Assertion selbergr x + R x log x + d = 1 x Λ d R x d x 𝑂1

Proof

Step Hyp Ref Expression
1 pntrval.r R = a + ψ a a
2 reex V
3 rpssre +
4 2 3 ssexi + V
5 4 a1i + V
6 ovexd x + ψ x log x + d = 1 x Λ d ψ x d x 2 log x V
7 ovexd x + d = 1 x Λ d d log x V
8 eqidd x + ψ x log x + d = 1 x Λ d ψ x d x 2 log x = x + ψ x log x + d = 1 x Λ d ψ x d x 2 log x
9 eqidd x + d = 1 x Λ d d log x = x + d = 1 x Λ d d log x
10 5 6 7 8 9 offval2 x + ψ x log x + d = 1 x Λ d ψ x d x 2 log x f x + d = 1 x Λ d d log x = x + ψ x log x + d = 1 x Λ d ψ x d x - 2 log x - d = 1 x Λ d d log x
11 10 mptru x + ψ x log x + d = 1 x Λ d ψ x d x 2 log x f x + d = 1 x Λ d d log x = x + ψ x log x + d = 1 x Λ d ψ x d x - 2 log x - d = 1 x Λ d d log x
12 1 pntrf R : +
13 12 ffvelrni x + R x
14 13 recnd x + R x
15 relogcl x + log x
16 15 recnd x + log x
17 14 16 mulcld x + R x log x
18 fzfid x + 1 x Fin
19 elfznn d 1 x d
20 19 adantl x + d 1 x d
21 vmacl d Λ d
22 20 21 syl x + d 1 x Λ d
23 22 recnd x + d 1 x Λ d
24 rpre x + x
25 nndivre x d x d
26 24 19 25 syl2an x + d 1 x x d
27 chpcl x d ψ x d
28 26 27 syl x + d 1 x ψ x d
29 28 recnd x + d 1 x ψ x d
30 23 29 mulcld x + d 1 x Λ d ψ x d
31 18 30 fsumcl x + d = 1 x Λ d ψ x d
32 17 31 addcld x + R x log x + d = 1 x Λ d ψ x d
33 rpcn x + x
34 rpne0 x + x 0
35 32 33 34 divcld x + R x log x + d = 1 x Λ d ψ x d x
36 22 20 nndivred x + d 1 x Λ d d
37 36 recnd x + d 1 x Λ d d
38 18 37 fsumcl x + d = 1 x Λ d d
39 35 38 16 nnncan2d x + R x log x + d = 1 x Λ d ψ x d x - log x - d = 1 x Λ d d log x = R x log x + d = 1 x Λ d ψ x d x d = 1 x Λ d d
40 chpcl x ψ x
41 24 40 syl x + ψ x
42 41 recnd x + ψ x
43 42 16 mulcld x + ψ x log x
44 43 31 addcld x + ψ x log x + d = 1 x Λ d ψ x d
45 44 33 34 divcld x + ψ x log x + d = 1 x Λ d ψ x d x
46 45 16 16 subsub4d x + ψ x log x + d = 1 x Λ d ψ x d x - log x - log x = ψ x log x + d = 1 x Λ d ψ x d x log x + log x
47 1 pntrval x + R x = ψ x x
48 47 oveq1d x + R x log x = ψ x x log x
49 42 33 16 subdird x + ψ x x log x = ψ x log x x log x
50 48 49 eqtrd x + R x log x = ψ x log x x log x
51 50 oveq1d x + R x log x + d = 1 x Λ d ψ x d = ψ x log x - x log x + d = 1 x Λ d ψ x d
52 33 16 mulcld x + x log x
53 43 31 52 addsubd x + ψ x log x + d = 1 x Λ d ψ x d - x log x = ψ x log x - x log x + d = 1 x Λ d ψ x d
54 51 53 eqtr4d x + R x log x + d = 1 x Λ d ψ x d = ψ x log x + d = 1 x Λ d ψ x d - x log x
55 54 oveq1d x + R x log x + d = 1 x Λ d ψ x d x = ψ x log x + d = 1 x Λ d ψ x d - x log x x
56 rpcnne0 x + x x 0
57 divsubdir ψ x log x + d = 1 x Λ d ψ x d x log x x x 0 ψ x log x + d = 1 x Λ d ψ x d - x log x x = ψ x log x + d = 1 x Λ d ψ x d x x log x x
58 44 52 56 57 syl3anc x + ψ x log x + d = 1 x Λ d ψ x d - x log x x = ψ x log x + d = 1 x Λ d ψ x d x x log x x
59 16 33 34 divcan3d x + x log x x = log x
60 59 oveq2d x + ψ x log x + d = 1 x Λ d ψ x d x x log x x = ψ x log x + d = 1 x Λ d ψ x d x log x
61 55 58 60 3eqtrd x + R x log x + d = 1 x Λ d ψ x d x = ψ x log x + d = 1 x Λ d ψ x d x log x
62 61 oveq1d x + R x log x + d = 1 x Λ d ψ x d x log x = ψ x log x + d = 1 x Λ d ψ x d x - log x - log x
63 16 2timesd x + 2 log x = log x + log x
64 63 oveq2d x + ψ x log x + d = 1 x Λ d ψ x d x 2 log x = ψ x log x + d = 1 x Λ d ψ x d x log x + log x
65 46 62 64 3eqtr4d x + R x log x + d = 1 x Λ d ψ x d x log x = ψ x log x + d = 1 x Λ d ψ x d x 2 log x
66 65 oveq1d x + R x log x + d = 1 x Λ d ψ x d x - log x - d = 1 x Λ d d log x = ψ x log x + d = 1 x Λ d ψ x d x - 2 log x - d = 1 x Λ d d log x
67 33 38 mulcld x + x d = 1 x Λ d d
68 divsubdir R x log x + d = 1 x Λ d ψ x d x d = 1 x Λ d d x x 0 R x log x + d = 1 x Λ d ψ x d - x d = 1 x Λ d d x = R x log x + d = 1 x Λ d ψ x d x x d = 1 x Λ d d x
69 32 67 56 68 syl3anc x + R x log x + d = 1 x Λ d ψ x d - x d = 1 x Λ d d x = R x log x + d = 1 x Λ d ψ x d x x d = 1 x Λ d d x
70 17 31 67 addsubassd x + R x log x + d = 1 x Λ d ψ x d - x d = 1 x Λ d d = R x log x + d = 1 x Λ d ψ x d - x d = 1 x Λ d d
71 33 adantr x + d 1 x x
72 71 37 mulcld x + d 1 x x Λ d d
73 18 30 72 fsumsub x + d = 1 x Λ d ψ x d x Λ d d = d = 1 x Λ d ψ x d d = 1 x x Λ d d
74 26 recnd x + d 1 x x d
75 23 29 74 subdid x + d 1 x Λ d ψ x d x d = Λ d ψ x d Λ d x d
76 19 nnrpd d 1 x d +
77 rpdivcl x + d + x d +
78 76 77 sylan2 x + d 1 x x d +
79 1 pntrval x d + R x d = ψ x d x d
80 78 79 syl x + d 1 x R x d = ψ x d x d
81 80 oveq2d x + d 1 x Λ d R x d = Λ d ψ x d x d
82 20 nnrpd x + d 1 x d +
83 rpcnne0 d + d d 0
84 82 83 syl x + d 1 x d d 0
85 div12 x Λ d d d 0 x Λ d d = Λ d x d
86 71 23 84 85 syl3anc x + d 1 x x Λ d d = Λ d x d
87 86 oveq2d x + d 1 x Λ d ψ x d x Λ d d = Λ d ψ x d Λ d x d
88 75 81 87 3eqtr4d x + d 1 x Λ d R x d = Λ d ψ x d x Λ d d
89 88 sumeq2dv x + d = 1 x Λ d R x d = d = 1 x Λ d ψ x d x Λ d d
90 18 33 37 fsummulc2 x + x d = 1 x Λ d d = d = 1 x x Λ d d
91 90 oveq2d x + d = 1 x Λ d ψ x d x d = 1 x Λ d d = d = 1 x Λ d ψ x d d = 1 x x Λ d d
92 73 89 91 3eqtr4rd x + d = 1 x Λ d ψ x d x d = 1 x Λ d d = d = 1 x Λ d R x d
93 92 oveq2d x + R x log x + d = 1 x Λ d ψ x d - x d = 1 x Λ d d = R x log x + d = 1 x Λ d R x d
94 70 93 eqtrd x + R x log x + d = 1 x Λ d ψ x d - x d = 1 x Λ d d = R x log x + d = 1 x Λ d R x d
95 94 oveq1d x + R x log x + d = 1 x Λ d ψ x d - x d = 1 x Λ d d x = R x log x + d = 1 x Λ d R x d x
96 38 33 34 divcan3d x + x d = 1 x Λ d d x = d = 1 x Λ d d
97 96 oveq2d x + R x log x + d = 1 x Λ d ψ x d x x d = 1 x Λ d d x = R x log x + d = 1 x Λ d ψ x d x d = 1 x Λ d d
98 69 95 97 3eqtr3rd x + R x log x + d = 1 x Λ d ψ x d x d = 1 x Λ d d = R x log x + d = 1 x Λ d R x d x
99 39 66 98 3eqtr3d x + ψ x log x + d = 1 x Λ d ψ x d x - 2 log x - d = 1 x Λ d d log x = R x log x + d = 1 x Λ d R x d x
100 99 mpteq2ia x + ψ x log x + d = 1 x Λ d ψ x d x - 2 log x - d = 1 x Λ d d log x = x + R x log x + d = 1 x Λ d R x d x
101 11 100 eqtri x + ψ x log x + d = 1 x Λ d ψ x d x 2 log x f x + d = 1 x Λ d d log x = x + R x log x + d = 1 x Λ d R x d x
102 selberg2 x + ψ x log x + d = 1 x Λ d ψ x d x 2 log x 𝑂1
103 vmadivsum x + d = 1 x Λ d d log x 𝑂1
104 o1sub x + ψ x log x + d = 1 x Λ d ψ x d x 2 log x 𝑂1 x + d = 1 x Λ d d log x 𝑂1 x + ψ x log x + d = 1 x Λ d ψ x d x 2 log x f x + d = 1 x Λ d d log x 𝑂1
105 102 103 104 mp2an x + ψ x log x + d = 1 x Λ d ψ x d x 2 log x f x + d = 1 x Λ d d log x 𝑂1
106 101 105 eqeltrri x + R x log x + d = 1 x Λ d R x d x 𝑂1