Step |
Hyp |
Ref |
Expression |
1 |
|
pntrval.r |
|
2 |
|
reex |
|
3 |
|
rpssre |
|
4 |
2 3
|
ssexi |
|
5 |
4
|
a1i |
|
6 |
|
ovexd |
|
7 |
|
ovexd |
|
8 |
|
eqidd |
|
9 |
|
eqidd |
|
10 |
5 6 7 8 9
|
offval2 |
|
11 |
10
|
mptru |
|
12 |
1
|
pntrf |
|
13 |
12
|
ffvelrni |
|
14 |
13
|
recnd |
|
15 |
|
relogcl |
|
16 |
15
|
recnd |
|
17 |
14 16
|
mulcld |
|
18 |
|
fzfid |
|
19 |
|
elfznn |
|
20 |
19
|
adantl |
|
21 |
|
vmacl |
|
22 |
20 21
|
syl |
|
23 |
22
|
recnd |
|
24 |
|
rpre |
|
25 |
|
nndivre |
|
26 |
24 19 25
|
syl2an |
|
27 |
|
chpcl |
|
28 |
26 27
|
syl |
|
29 |
28
|
recnd |
|
30 |
23 29
|
mulcld |
|
31 |
18 30
|
fsumcl |
|
32 |
17 31
|
addcld |
|
33 |
|
rpcn |
|
34 |
|
rpne0 |
|
35 |
32 33 34
|
divcld |
|
36 |
22 20
|
nndivred |
|
37 |
36
|
recnd |
|
38 |
18 37
|
fsumcl |
|
39 |
35 38 16
|
nnncan2d |
|
40 |
|
chpcl |
|
41 |
24 40
|
syl |
|
42 |
41
|
recnd |
|
43 |
42 16
|
mulcld |
|
44 |
43 31
|
addcld |
|
45 |
44 33 34
|
divcld |
|
46 |
45 16 16
|
subsub4d |
|
47 |
1
|
pntrval |
|
48 |
47
|
oveq1d |
|
49 |
42 33 16
|
subdird |
|
50 |
48 49
|
eqtrd |
|
51 |
50
|
oveq1d |
|
52 |
33 16
|
mulcld |
|
53 |
43 31 52
|
addsubd |
|
54 |
51 53
|
eqtr4d |
|
55 |
54
|
oveq1d |
|
56 |
|
rpcnne0 |
|
57 |
|
divsubdir |
|
58 |
44 52 56 57
|
syl3anc |
|
59 |
16 33 34
|
divcan3d |
|
60 |
59
|
oveq2d |
|
61 |
55 58 60
|
3eqtrd |
|
62 |
61
|
oveq1d |
|
63 |
16
|
2timesd |
|
64 |
63
|
oveq2d |
|
65 |
46 62 64
|
3eqtr4d |
|
66 |
65
|
oveq1d |
|
67 |
33 38
|
mulcld |
|
68 |
|
divsubdir |
|
69 |
32 67 56 68
|
syl3anc |
|
70 |
17 31 67
|
addsubassd |
|
71 |
33
|
adantr |
|
72 |
71 37
|
mulcld |
|
73 |
18 30 72
|
fsumsub |
|
74 |
26
|
recnd |
|
75 |
23 29 74
|
subdid |
|
76 |
19
|
nnrpd |
|
77 |
|
rpdivcl |
|
78 |
76 77
|
sylan2 |
|
79 |
1
|
pntrval |
|
80 |
78 79
|
syl |
|
81 |
80
|
oveq2d |
|
82 |
20
|
nnrpd |
|
83 |
|
rpcnne0 |
|
84 |
82 83
|
syl |
|
85 |
|
div12 |
|
86 |
71 23 84 85
|
syl3anc |
|
87 |
86
|
oveq2d |
|
88 |
75 81 87
|
3eqtr4d |
|
89 |
88
|
sumeq2dv |
|
90 |
18 33 37
|
fsummulc2 |
|
91 |
90
|
oveq2d |
|
92 |
73 89 91
|
3eqtr4rd |
|
93 |
92
|
oveq2d |
|
94 |
70 93
|
eqtrd |
|
95 |
94
|
oveq1d |
|
96 |
38 33 34
|
divcan3d |
|
97 |
96
|
oveq2d |
|
98 |
69 95 97
|
3eqtr3rd |
|
99 |
39 66 98
|
3eqtr3d |
|
100 |
99
|
mpteq2ia |
|
101 |
11 100
|
eqtri |
|
102 |
|
selberg2 |
|
103 |
|
vmadivsum |
|
104 |
|
o1sub |
|
105 |
102 103 104
|
mp2an |
|
106 |
101 105
|
eqeltrri |
|