Metamath Proof Explorer


Theorem selbergs

Description: Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypothesis pntsval.1 S = a i = 1 a Λ i log i + ψ a i
Assertion selbergs x + S x x 2 log x 𝑂1

Proof

Step Hyp Ref Expression
1 pntsval.1 S = a i = 1 a Λ i log i + ψ a i
2 rpre x + x
3 1 pntsval x S x = n = 1 x Λ n log n + ψ x n
4 2 3 syl x + S x = n = 1 x Λ n log n + ψ x n
5 4 oveq1d x + S x x = n = 1 x Λ n log n + ψ x n x
6 5 oveq1d x + S x x 2 log x = n = 1 x Λ n log n + ψ x n x 2 log x
7 6 mpteq2ia x + S x x 2 log x = x + n = 1 x Λ n log n + ψ x n x 2 log x
8 selberg x + n = 1 x Λ n log n + ψ x n x 2 log x 𝑂1
9 7 8 eqeltri x + S x x 2 log x 𝑂1