Metamath Proof Explorer


Theorem selbergsb

Description: Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypothesis pntsval.1 S = a i = 1 a Λ i log i + ψ a i
Assertion selbergsb c + x 1 +∞ S x x 2 log x c

Proof

Step Hyp Ref Expression
1 pntsval.1 S = a i = 1 a Λ i log i + ψ a i
2 selbergb c + x 1 +∞ n = 1 x Λ n log n + ψ x n x 2 log x c
3 1re 1
4 elicopnf 1 x 1 +∞ x 1 x
5 3 4 ax-mp x 1 +∞ x 1 x
6 5 simplbi x 1 +∞ x
7 1 pntsval x S x = n = 1 x Λ n log n + ψ x n
8 6 7 syl x 1 +∞ S x = n = 1 x Λ n log n + ψ x n
9 8 oveq1d x 1 +∞ S x x = n = 1 x Λ n log n + ψ x n x
10 9 fvoveq1d x 1 +∞ S x x 2 log x = n = 1 x Λ n log n + ψ x n x 2 log x
11 10 breq1d x 1 +∞ S x x 2 log x c n = 1 x Λ n log n + ψ x n x 2 log x c
12 11 ralbiia x 1 +∞ S x x 2 log x c x 1 +∞ n = 1 x Λ n log n + ψ x n x 2 log x c
13 12 rexbii c + x 1 +∞ S x x 2 log x c c + x 1 +∞ n = 1 x Λ n log n + ψ x n x 2 log x c
14 2 13 mpbir c + x 1 +∞ S x x 2 log x c