Metamath Proof Explorer


Theorem selvadd

Description: The "variable selection" function is additive. (Contributed by SN, 7-Feb-2025)

Ref Expression
Hypotheses selvadd.p P = I mPoly R
selvadd.b B = Base P
selvadd.1 + ˙ = + P
selvadd.u U = I J mPoly R
selvadd.t T = J mPoly U
selvadd.2 ˙ = + T
selvadd.i φ I V
selvadd.r φ R CRing
selvadd.j φ J I
selvadd.f φ F B
selvadd.g φ G B
Assertion selvadd φ I selectVars R J F + ˙ G = I selectVars R J F ˙ I selectVars R J G

Proof

Step Hyp Ref Expression
1 selvadd.p P = I mPoly R
2 selvadd.b B = Base P
3 selvadd.1 + ˙ = + P
4 selvadd.u U = I J mPoly R
5 selvadd.t T = J mPoly U
6 selvadd.2 ˙ = + T
7 selvadd.i φ I V
8 selvadd.r φ R CRing
9 selvadd.j φ J I
10 selvadd.f φ F B
11 selvadd.g φ G B
12 eqid I mPoly T = I mPoly T
13 eqid Base I mPoly T = Base I mPoly T
14 eqid + I mPoly T = + I mPoly T
15 eqid algSc T = algSc T
16 eqid algSc T algSc U = algSc T algSc U
17 7 difexd φ I J V
18 7 9 ssexd φ J V
19 4 5 15 16 17 18 8 selvcllem2 φ algSc T algSc U R RingHom T
20 rhmghm algSc T algSc U R RingHom T algSc T algSc U R GrpHom T
21 ghmmhm algSc T algSc U R GrpHom T algSc T algSc U R MndHom T
22 19 20 21 3syl φ algSc T algSc U R MndHom T
23 1 12 2 13 3 14 22 10 11 mhmcoaddmpl φ algSc T algSc U F + ˙ G = algSc T algSc U F + I mPoly T algSc T algSc U G
24 23 fveq2d φ I eval T algSc T algSc U F + ˙ G = I eval T algSc T algSc U F + I mPoly T algSc T algSc U G
25 24 fveq1d φ I eval T algSc T algSc U F + ˙ G x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U F + I mPoly T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
26 eqid I eval T = I eval T
27 eqid Base T = Base T
28 4 17 8 mplcrngd φ U CRing
29 5 18 28 mplcrngd φ T CRing
30 eqid x I if x J J mVar U x algSc T I J mVar R x = x I if x J J mVar U x algSc T I J mVar R x
31 4 5 15 27 30 7 8 9 selvcllem5 φ x I if x J J mVar U x algSc T I J mVar R x Base T I
32 1 12 2 13 22 10 mhmcompl φ algSc T algSc U F Base I mPoly T
33 eqidd φ I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x
34 32 33 jca φ algSc T algSc U F Base I mPoly T I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x
35 1 12 2 13 22 11 mhmcompl φ algSc T algSc U G Base I mPoly T
36 eqidd φ I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
37 35 36 jca φ algSc T algSc U G Base I mPoly T I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
38 26 12 27 13 14 6 7 29 31 34 37 evladdval φ algSc T algSc U F + I mPoly T algSc T algSc U G Base I mPoly T I eval T algSc T algSc U F + I mPoly T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x ˙ I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
39 38 simprd φ I eval T algSc T algSc U F + I mPoly T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x ˙ I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
40 25 39 eqtrd φ I eval T algSc T algSc U F + ˙ G x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x ˙ I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
41 1 7 8 mplcrngd φ P CRing
42 41 crnggrpd φ P Grp
43 2 3 42 10 11 grpcld φ F + ˙ G B
44 1 2 4 5 15 16 8 9 43 selvval2 φ I selectVars R J F + ˙ G = I eval T algSc T algSc U F + ˙ G x I if x J J mVar U x algSc T I J mVar R x
45 1 2 4 5 15 16 8 9 10 selvval2 φ I selectVars R J F = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x
46 1 2 4 5 15 16 8 9 11 selvval2 φ I selectVars R J G = I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
47 45 46 oveq12d φ I selectVars R J F ˙ I selectVars R J G = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x ˙ I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
48 40 44 47 3eqtr4d φ I selectVars R J F + ˙ G = I selectVars R J F ˙ I selectVars R J G