Metamath Proof Explorer


Theorem selvcl

Description: Closure of the "variable selection" function. (Contributed by SN, 22-Feb-2024)

Ref Expression
Hypotheses selvcl.p P = I mPoly R
selvcl.b B = Base P
selvcl.u U = I J mPoly R
selvcl.t T = J mPoly U
selvcl.e E = Base T
selvcl.r φ R CRing
selvcl.j φ J I
selvcl.f φ F B
Assertion selvcl φ I selectVars R J F E

Proof

Step Hyp Ref Expression
1 selvcl.p P = I mPoly R
2 selvcl.b B = Base P
3 selvcl.u U = I J mPoly R
4 selvcl.t T = J mPoly U
5 selvcl.e E = Base T
6 selvcl.r φ R CRing
7 selvcl.j φ J I
8 selvcl.f φ F B
9 eqid algSc T = algSc T
10 eqid algSc T algSc U = algSc T algSc U
11 1 2 mplrcl F B I V
12 8 11 syl φ I V
13 1 2 3 4 9 10 12 6 7 8 selvval φ I selectVars R J F = I evalSub T ran algSc T algSc U algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x
14 eqid T 𝑠 E I = T 𝑠 E I
15 eqid Base T 𝑠 E I = Base T 𝑠 E I
16 12 7 ssexd φ J V
17 12 difexd φ I J V
18 3 17 6 mplcrngd φ U CRing
19 4 16 18 mplcrngd φ T CRing
20 ovexd φ E I V
21 eqid I evalSub T ran algSc T algSc U = I evalSub T ran algSc T algSc U
22 eqid I mPoly T 𝑠 ran algSc T algSc U = I mPoly T 𝑠 ran algSc T algSc U
23 eqid T 𝑠 ran algSc T algSc U = T 𝑠 ran algSc T algSc U
24 3 4 9 10 21 22 23 14 5 12 6 7 selvcllemh φ I evalSub T ran algSc T algSc U I mPoly T 𝑠 ran algSc T algSc U RingHom T 𝑠 E I
25 eqid Base I mPoly T 𝑠 ran algSc T algSc U = Base I mPoly T 𝑠 ran algSc T algSc U
26 25 15 rhmf I evalSub T ran algSc T algSc U I mPoly T 𝑠 ran algSc T algSc U RingHom T 𝑠 E I I evalSub T ran algSc T algSc U : Base I mPoly T 𝑠 ran algSc T algSc U Base T 𝑠 E I
27 24 26 syl φ I evalSub T ran algSc T algSc U : Base I mPoly T 𝑠 ran algSc T algSc U Base T 𝑠 E I
28 1 2 3 4 9 10 23 22 25 6 7 8 selvcllem4 φ algSc T algSc U F Base I mPoly T 𝑠 ran algSc T algSc U
29 27 28 ffvelcdmd φ I evalSub T ran algSc T algSc U algSc T algSc U F Base T 𝑠 E I
30 14 5 15 19 20 29 pwselbas φ I evalSub T ran algSc T algSc U algSc T algSc U F : E I E
31 eqid x I if x J J mVar U x algSc T I J mVar R x = x I if x J J mVar U x algSc T I J mVar R x
32 3 4 9 5 31 12 6 7 selvcllem5 φ x I if x J J mVar U x algSc T I J mVar R x E I
33 30 32 ffvelcdmd φ I evalSub T ran algSc T algSc U algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x E
34 13 33 eqeltrd φ I selectVars R J F E