Metamath Proof Explorer


Theorem selvcllem1

Description: T is an associative algebra. For simplicity, I stands for ( I \ J ) and we have J e. W instead of J C_ I . TODO-SN: In practice, this "simplification" makes the lemmas harder to use. (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvcllem1.u U = I mPoly R
selvcllem1.t T = J mPoly U
selvcllem1.i φ I V
selvcllem1.j φ J W
selvcllem1.r φ R CRing
Assertion selvcllem1 φ T AssAlg

Proof

Step Hyp Ref Expression
1 selvcllem1.u U = I mPoly R
2 selvcllem1.t T = J mPoly U
3 selvcllem1.i φ I V
4 selvcllem1.j φ J W
5 selvcllem1.r φ R CRing
6 1 mplcrng I V R CRing U CRing
7 3 5 6 syl2anc φ U CRing
8 2 mplassa J W U CRing T AssAlg
9 4 7 8 syl2anc φ T AssAlg