Metamath Proof Explorer


Theorem selvcllem3

Description: The third argument passed to evalSub is in the domain. (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvcllem2.u U = I mPoly R
selvcllem2.t T = J mPoly U
selvcllem2.c C = algSc T
selvcllem2.d D = C algSc U
selvcllem2.i φ I V
selvcllem2.j φ J W
selvcllem2.r φ R CRing
Assertion selvcllem3 φ ran D SubRing T

Proof

Step Hyp Ref Expression
1 selvcllem2.u U = I mPoly R
2 selvcllem2.t T = J mPoly U
3 selvcllem2.c C = algSc T
4 selvcllem2.d D = C algSc U
5 selvcllem2.i φ I V
6 selvcllem2.j φ J W
7 selvcllem2.r φ R CRing
8 1 2 3 4 5 6 7 selvcllem2 φ D R RingHom T
9 rnrhmsubrg D R RingHom T ran D SubRing T
10 8 9 syl φ ran D SubRing T