Metamath Proof Explorer


Theorem selvcllem4

Description: The fourth argument passed to evalSub is in the domain (a polynomial in ( I mPoly ( J mPoly ( ( I \ J ) mPoly R ) ) ) ). (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses selvcllem4.p P = I mPoly R
selvcllem4.b B = Base P
selvcllem4.u U = I J mPoly R
selvcllem4.t T = J mPoly U
selvcllem4.c C = algSc T
selvcllem4.d D = C algSc U
selvcllem4.s S = T 𝑠 ran D
selvcllem4.w W = I mPoly S
selvcllem4.x X = Base W
selvcllem4.r φ R CRing
selvcllem4.j φ J I
selvcllem4.f φ F B
Assertion selvcllem4 φ D F X

Proof

Step Hyp Ref Expression
1 selvcllem4.p P = I mPoly R
2 selvcllem4.b B = Base P
3 selvcllem4.u U = I J mPoly R
4 selvcllem4.t T = J mPoly U
5 selvcllem4.c C = algSc T
6 selvcllem4.d D = C algSc U
7 selvcllem4.s S = T 𝑠 ran D
8 selvcllem4.w W = I mPoly S
9 selvcllem4.x X = Base W
10 selvcllem4.r φ R CRing
11 selvcllem4.j φ J I
12 selvcllem4.f φ F B
13 1 2 mplrcl F B I V
14 12 13 syl φ I V
15 14 difexd φ I J V
16 14 11 ssexd φ J V
17 3 4 5 6 15 16 10 selvcllem2 φ D R RingHom T
18 3 4 5 6 15 16 10 selvcllem3 φ ran D SubRing T
19 ssidd φ ran D ran D
20 7 resrhm2b ran D SubRing T ran D ran D D R RingHom T D R RingHom S
21 18 19 20 syl2anc φ D R RingHom T D R RingHom S
22 17 21 mpbid φ D R RingHom S
23 rhmghm D R RingHom S D R GrpHom S
24 ghmmhm D R GrpHom S D R MndHom S
25 22 23 24 3syl φ D R MndHom S
26 1 8 2 9 25 12 mhmcompl φ D F X