Metamath Proof Explorer


Theorem selvcllem5

Description: The fifth argument passed to evalSub is in the domain (a function I --> E ). (Contributed by SN, 22-Feb-2024)

Ref Expression
Hypotheses selvcllem5.u U = I J mPoly R
selvcllem5.t T = J mPoly U
selvcllem5.c C = algSc T
selvcllem5.e E = Base T
selvcllem5.f F = x I if x J J mVar U x C I J mVar R x
selvcllem5.i φ I V
selvcllem5.r φ R CRing
selvcllem5.j φ J I
Assertion selvcllem5 φ F E I

Proof

Step Hyp Ref Expression
1 selvcllem5.u U = I J mPoly R
2 selvcllem5.t T = J mPoly U
3 selvcllem5.c C = algSc T
4 selvcllem5.e E = Base T
5 selvcllem5.f F = x I if x J J mVar U x C I J mVar R x
6 selvcllem5.i φ I V
7 selvcllem5.r φ R CRing
8 selvcllem5.j φ J I
9 4 fvexi E V
10 9 a1i φ E V
11 eqid J mVar U = J mVar U
12 6 8 ssexd φ J V
13 12 adantr φ x J J V
14 6 difexd φ I J V
15 7 crngringd φ R Ring
16 1 14 15 mplringd φ U Ring
17 16 adantr φ x J U Ring
18 simpr φ x J x J
19 2 11 4 13 17 18 mvrcl φ x J J mVar U x E
20 19 adantlr φ x I x J J mVar U x E
21 eqid Base U = Base U
22 2 4 21 3 12 16 mplasclf φ C : Base U E
23 22 ad2antrr φ x I ¬ x J C : Base U E
24 eqid I J mVar R = I J mVar R
25 14 ad2antrr φ x I ¬ x J I J V
26 15 ad2antrr φ x I ¬ x J R Ring
27 eldif x I J x I ¬ x J
28 27 biimpri x I ¬ x J x I J
29 28 adantll φ x I ¬ x J x I J
30 1 24 21 25 26 29 mvrcl φ x I ¬ x J I J mVar R x Base U
31 23 30 ffvelcdmd φ x I ¬ x J C I J mVar R x E
32 20 31 ifclda φ x I if x J J mVar U x C I J mVar R x E
33 32 5 fmptd φ F : I E
34 10 6 33 elmapdd φ F E I