Metamath Proof Explorer


Theorem selvcllemh

Description: Apply the third argument ( selvcllem3 ) to show that Q is a (ring) homomorphism. (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses selvcllemh.u U = I J mPoly R
selvcllemh.t T = J mPoly U
selvcllemh.c C = algSc T
selvcllemh.d D = C algSc U
selvcllemh.q Q = I evalSub T ran D
selvcllemh.w W = I mPoly S
selvcllemh.s S = T 𝑠 ran D
selvcllemh.x X = T 𝑠 B I
selvcllemh.b B = Base T
selvcllemh.i φ I V
selvcllemh.r φ R CRing
selvcllemh.j φ J I
Assertion selvcllemh φ Q W RingHom X

Proof

Step Hyp Ref Expression
1 selvcllemh.u U = I J mPoly R
2 selvcllemh.t T = J mPoly U
3 selvcllemh.c C = algSc T
4 selvcllemh.d D = C algSc U
5 selvcllemh.q Q = I evalSub T ran D
6 selvcllemh.w W = I mPoly S
7 selvcllemh.s S = T 𝑠 ran D
8 selvcllemh.x X = T 𝑠 B I
9 selvcllemh.b B = Base T
10 selvcllemh.i φ I V
11 selvcllemh.r φ R CRing
12 selvcllemh.j φ J I
13 10 12 ssexd φ J V
14 10 difexd φ I J V
15 1 mplcrng I J V R CRing U CRing
16 14 11 15 syl2anc φ U CRing
17 2 mplcrng J V U CRing T CRing
18 13 16 17 syl2anc φ T CRing
19 1 2 3 4 14 13 11 selvcllem3 φ ran D SubRing T
20 5 6 7 8 9 evlsrhm I V T CRing ran D SubRing T Q W RingHom X
21 10 18 19 20 syl3anc φ Q W RingHom X