Metamath Proof Explorer


Theorem selvmul

Description: The "variable selection" function is multiplicative. (Contributed by SN, 18-Feb-2025)

Ref Expression
Hypotheses selvmul.p P = I mPoly R
selvmul.b B = Base P
selvmul.1 · ˙ = P
selvmul.u U = I J mPoly R
selvmul.t T = J mPoly U
selvmul.2 ˙ = T
selvmul.i φ I V
selvmul.r φ R CRing
selvmul.j φ J I
selvmul.f φ F B
selvmul.g φ G B
Assertion selvmul φ I selectVars R J F · ˙ G = I selectVars R J F ˙ I selectVars R J G

Proof

Step Hyp Ref Expression
1 selvmul.p P = I mPoly R
2 selvmul.b B = Base P
3 selvmul.1 · ˙ = P
4 selvmul.u U = I J mPoly R
5 selvmul.t T = J mPoly U
6 selvmul.2 ˙ = T
7 selvmul.i φ I V
8 selvmul.r φ R CRing
9 selvmul.j φ J I
10 selvmul.f φ F B
11 selvmul.g φ G B
12 eqid I mPoly T = I mPoly T
13 eqid Base I mPoly T = Base I mPoly T
14 eqid I mPoly T = I mPoly T
15 eqid algSc T = algSc T
16 eqid algSc T algSc U = algSc T algSc U
17 7 difexd φ I J V
18 7 9 ssexd φ J V
19 4 5 15 16 17 18 8 selvcllem2 φ algSc T algSc U R RingHom T
20 1 12 2 13 3 14 19 10 11 rhmcomulmpl φ algSc T algSc U F · ˙ G = algSc T algSc U F I mPoly T algSc T algSc U G
21 20 fveq2d φ I eval T algSc T algSc U F · ˙ G = I eval T algSc T algSc U F I mPoly T algSc T algSc U G
22 21 fveq1d φ I eval T algSc T algSc U F · ˙ G x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U F I mPoly T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
23 eqid I eval T = I eval T
24 eqid Base T = Base T
25 4 17 8 mplcrngd φ U CRing
26 5 18 25 mplcrngd φ T CRing
27 eqid x I if x J J mVar U x algSc T I J mVar R x = x I if x J J mVar U x algSc T I J mVar R x
28 4 5 15 24 27 7 8 9 selvcllem5 φ x I if x J J mVar U x algSc T I J mVar R x Base T I
29 rhmghm algSc T algSc U R RingHom T algSc T algSc U R GrpHom T
30 ghmmhm algSc T algSc U R GrpHom T algSc T algSc U R MndHom T
31 19 29 30 3syl φ algSc T algSc U R MndHom T
32 1 12 2 13 31 10 mhmcompl φ algSc T algSc U F Base I mPoly T
33 eqidd φ I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x
34 32 33 jca φ algSc T algSc U F Base I mPoly T I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x
35 1 12 2 13 31 11 mhmcompl φ algSc T algSc U G Base I mPoly T
36 eqidd φ I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
37 35 36 jca φ algSc T algSc U G Base I mPoly T I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
38 23 12 24 13 14 6 7 26 28 34 37 evlmulval φ algSc T algSc U F I mPoly T algSc T algSc U G Base I mPoly T I eval T algSc T algSc U F I mPoly T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x ˙ I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
39 38 simprd φ I eval T algSc T algSc U F I mPoly T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x ˙ I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
40 22 39 eqtrd φ I eval T algSc T algSc U F · ˙ G x I if x J J mVar U x algSc T I J mVar R x = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x ˙ I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
41 1 7 8 mplcrngd φ P CRing
42 41 crngringd φ P Ring
43 2 3 42 10 11 ringcld φ F · ˙ G B
44 1 2 4 5 15 16 8 9 43 selvval2 φ I selectVars R J F · ˙ G = I eval T algSc T algSc U F · ˙ G x I if x J J mVar U x algSc T I J mVar R x
45 1 2 4 5 15 16 8 9 10 selvval2 φ I selectVars R J F = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x
46 1 2 4 5 15 16 8 9 11 selvval2 φ I selectVars R J G = I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
47 45 46 oveq12d φ I selectVars R J F ˙ I selectVars R J G = I eval T algSc T algSc U F x I if x J J mVar U x algSc T I J mVar R x ˙ I eval T algSc T algSc U G x I if x J J mVar U x algSc T I J mVar R x
48 40 44 47 3eqtr4d φ I selectVars R J F · ˙ G = I selectVars R J F ˙ I selectVars R J G