Step |
Hyp |
Ref |
Expression |
1 |
|
selvmul.p |
|
2 |
|
selvmul.b |
|
3 |
|
selvmul.1 |
|
4 |
|
selvmul.u |
|
5 |
|
selvmul.t |
|
6 |
|
selvmul.2 |
|
7 |
|
selvmul.i |
|
8 |
|
selvmul.r |
|
9 |
|
selvmul.j |
|
10 |
|
selvmul.f |
|
11 |
|
selvmul.g |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
7
|
difexd |
|
18 |
7 9
|
ssexd |
|
19 |
4 5 15 16 17 18 8
|
selvcllem2 |
|
20 |
1 12 2 13 3 14 19 10 11
|
rhmcomulmpl |
|
21 |
20
|
fveq2d |
|
22 |
21
|
fveq1d |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
4 17 8
|
mplcrngd |
|
26 |
5 18 25
|
mplcrngd |
|
27 |
|
eqid |
|
28 |
4 5 15 24 27 7 8 9
|
selvcllem5 |
|
29 |
|
rhmghm |
|
30 |
|
ghmmhm |
|
31 |
19 29 30
|
3syl |
|
32 |
1 12 2 13 31 10
|
mhmcompl |
|
33 |
|
eqidd |
|
34 |
32 33
|
jca |
|
35 |
1 12 2 13 31 11
|
mhmcompl |
|
36 |
|
eqidd |
|
37 |
35 36
|
jca |
|
38 |
23 12 24 13 14 6 7 26 28 34 37
|
evlmulval |
|
39 |
38
|
simprd |
|
40 |
22 39
|
eqtrd |
|
41 |
1 7 8
|
mplcrngd |
|
42 |
41
|
crngringd |
|
43 |
2 3 42 10 11
|
ringcld |
|
44 |
1 2 4 5 15 16 8 9 43
|
selvval2 |
|
45 |
1 2 4 5 15 16 8 9 10
|
selvval2 |
|
46 |
1 2 4 5 15 16 8 9 11
|
selvval2 |
|
47 |
45 46
|
oveq12d |
|
48 |
40 44 47
|
3eqtr4d |
|