Metamath Proof Explorer


Theorem selvvvval

Description: Recover the original polynomial from a selectVars application. (Contributed by SN, 15-Mar-2025)

Ref Expression
Hypotheses selvvvval.d D = h 0 I | h -1 Fin
selvvvval.p P = I mPoly R
selvvvval.b B = Base P
selvvvval.r φ R CRing
selvvvval.j φ J I
selvvvval.f φ F B
selvvvval.y φ Y D
Assertion selvvvval φ I selectVars R J F Y J Y I J = F Y

Proof

Step Hyp Ref Expression
1 selvvvval.d D = h 0 I | h -1 Fin
2 selvvvval.p P = I mPoly R
3 selvvvval.b B = Base P
4 selvvvval.r φ R CRing
5 selvvvval.j φ J I
6 selvvvval.f φ F B
7 selvvvval.y φ Y D
8 eqid I J mPoly R = I J mPoly R
9 eqid J mPoly I J mPoly R = J mPoly I J mPoly R
10 eqid algSc J mPoly I J mPoly R = algSc J mPoly I J mPoly R
11 eqid algSc J mPoly I J mPoly R algSc I J mPoly R = algSc J mPoly I J mPoly R algSc I J mPoly R
12 2 3 8 9 10 11 4 5 6 selvval2 φ I selectVars R J F = I eval J mPoly I J mPoly R algSc J mPoly I J mPoly R algSc I J mPoly R F z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z
13 eqid I eval J mPoly I J mPoly R = I eval J mPoly I J mPoly R
14 eqid I mPoly J mPoly I J mPoly R = I mPoly J mPoly I J mPoly R
15 eqid Base I mPoly J mPoly I J mPoly R = Base I mPoly J mPoly I J mPoly R
16 eqid Base J mPoly I J mPoly R = Base J mPoly I J mPoly R
17 eqid mulGrp J mPoly I J mPoly R = mulGrp J mPoly I J mPoly R
18 eqid mulGrp J mPoly I J mPoly R = mulGrp J mPoly I J mPoly R
19 eqid J mPoly I J mPoly R = J mPoly I J mPoly R
20 2 3 mplrcl F B I V
21 6 20 syl φ I V
22 21 5 ssexd φ J V
23 21 difexd φ I J V
24 8 23 4 mplcrngd φ I J mPoly R CRing
25 9 22 24 mplcrngd φ J mPoly I J mPoly R CRing
26 9 mplassa J V I J mPoly R CRing J mPoly I J mPoly R AssAlg
27 22 24 26 syl2anc φ J mPoly I J mPoly R AssAlg
28 eqid Scalar J mPoly I J mPoly R = Scalar J mPoly I J mPoly R
29 10 28 asclrhm J mPoly I J mPoly R AssAlg algSc J mPoly I J mPoly R Scalar J mPoly I J mPoly R RingHom J mPoly I J mPoly R
30 27 29 syl φ algSc J mPoly I J mPoly R Scalar J mPoly I J mPoly R RingHom J mPoly I J mPoly R
31 8 mplassa I J V R CRing I J mPoly R AssAlg
32 23 4 31 syl2anc φ I J mPoly R AssAlg
33 eqid algSc I J mPoly R = algSc I J mPoly R
34 eqid Scalar I J mPoly R = Scalar I J mPoly R
35 33 34 asclrhm I J mPoly R AssAlg algSc I J mPoly R Scalar I J mPoly R RingHom I J mPoly R
36 32 35 syl φ algSc I J mPoly R Scalar I J mPoly R RingHom I J mPoly R
37 8 23 4 mplsca φ R = Scalar I J mPoly R
38 37 eqcomd φ Scalar I J mPoly R = R
39 9 22 24 mplsca φ I J mPoly R = Scalar J mPoly I J mPoly R
40 38 39 oveq12d φ Scalar I J mPoly R RingHom I J mPoly R = R RingHom Scalar J mPoly I J mPoly R
41 36 40 eleqtrd φ algSc I J mPoly R R RingHom Scalar J mPoly I J mPoly R
42 rhmco algSc J mPoly I J mPoly R Scalar J mPoly I J mPoly R RingHom J mPoly I J mPoly R algSc I J mPoly R R RingHom Scalar J mPoly I J mPoly R algSc J mPoly I J mPoly R algSc I J mPoly R R RingHom J mPoly I J mPoly R
43 30 41 42 syl2anc φ algSc J mPoly I J mPoly R algSc I J mPoly R R RingHom J mPoly I J mPoly R
44 rhmghm algSc J mPoly I J mPoly R algSc I J mPoly R R RingHom J mPoly I J mPoly R algSc J mPoly I J mPoly R algSc I J mPoly R R GrpHom J mPoly I J mPoly R
45 ghmmhm algSc J mPoly I J mPoly R algSc I J mPoly R R GrpHom J mPoly I J mPoly R algSc J mPoly I J mPoly R algSc I J mPoly R R MndHom J mPoly I J mPoly R
46 43 44 45 3syl φ algSc J mPoly I J mPoly R algSc I J mPoly R R MndHom J mPoly I J mPoly R
47 2 14 3 15 46 6 mhmcompl φ algSc J mPoly I J mPoly R algSc I J mPoly R F Base I mPoly J mPoly I J mPoly R
48 fvexd φ Base J mPoly I J mPoly R V
49 eqid J mVar I J mPoly R = J mVar I J mPoly R
50 24 crngringd φ I J mPoly R Ring
51 9 49 16 22 50 mvrf2 φ J mVar I J mPoly R : J Base J mPoly I J mPoly R
52 51 ffvelcdmda φ z J J mVar I J mPoly R z Base J mPoly I J mPoly R
53 52 adantlr φ z I z J J mVar I J mPoly R z Base J mPoly I J mPoly R
54 eldif z I J z I ¬ z J
55 eqid Base I J mPoly R = Base I J mPoly R
56 9 16 55 10 22 50 mplasclf φ algSc J mPoly I J mPoly R : Base I J mPoly R Base J mPoly I J mPoly R
57 56 adantr φ z I J algSc J mPoly I J mPoly R : Base I J mPoly R Base J mPoly I J mPoly R
58 eqid I J mVar R = I J mVar R
59 4 crngringd φ R Ring
60 8 58 55 23 59 mvrf2 φ I J mVar R : I J Base I J mPoly R
61 60 ffvelcdmda φ z I J I J mVar R z Base I J mPoly R
62 57 61 ffvelcdmd φ z I J algSc J mPoly I J mPoly R I J mVar R z Base J mPoly I J mPoly R
63 54 62 sylan2br φ z I ¬ z J algSc J mPoly I J mPoly R I J mVar R z Base J mPoly I J mPoly R
64 63 anassrs φ z I ¬ z J algSc J mPoly I J mPoly R I J mVar R z Base J mPoly I J mPoly R
65 53 64 ifclda φ z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z Base J mPoly I J mPoly R
66 65 fmpttd φ z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z : I Base J mPoly I J mPoly R
67 48 21 66 elmapdd φ z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z Base J mPoly I J mPoly R I
68 13 14 15 1 16 17 18 19 21 25 47 67 evlvvval φ I eval J mPoly I J mPoly R algSc J mPoly I J mPoly R algSc I J mPoly R F z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z = J mPoly I J mPoly R g D algSc J mPoly I J mPoly R algSc I J mPoly R F g J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k
69 eqid Base R = Base R
70 2 69 3 1 6 mplelf φ F : D Base R
71 70 adantr φ g D F : D Base R
72 simpr φ g D g D
73 71 72 fvco3d φ g D algSc J mPoly I J mPoly R algSc I J mPoly R F g = algSc J mPoly I J mPoly R algSc I J mPoly R F g
74 8 55 69 33 23 59 mplasclf φ algSc I J mPoly R : Base R Base I J mPoly R
75 74 adantr φ g D algSc I J mPoly R : Base R Base I J mPoly R
76 70 ffvelcdmda φ g D F g Base R
77 75 76 fvco3d φ g D algSc J mPoly I J mPoly R algSc I J mPoly R F g = algSc J mPoly I J mPoly R algSc I J mPoly R F g
78 73 77 eqtrd φ g D algSc J mPoly I J mPoly R algSc I J mPoly R F g = algSc J mPoly I J mPoly R algSc I J mPoly R F g
79 17 16 mgpbas Base J mPoly I J mPoly R = Base mulGrp J mPoly I J mPoly R
80 eqid 0 mulGrp J mPoly I J mPoly R = 0 mulGrp J mPoly I J mPoly R
81 17 19 mgpplusg J mPoly I J mPoly R = + mulGrp J mPoly I J mPoly R
82 17 crngmgp J mPoly I J mPoly R CRing mulGrp J mPoly I J mPoly R CMnd
83 25 82 syl φ mulGrp J mPoly I J mPoly R CMnd
84 83 adantr φ g D mulGrp J mPoly I J mPoly R CMnd
85 21 adantr φ g D I V
86 83 cmnmndd φ mulGrp J mPoly I J mPoly R Mnd
87 86 ad2antrr φ g D k I mulGrp J mPoly I J mPoly R Mnd
88 1 psrbagf g D g : I 0
89 88 adantl φ g D g : I 0
90 89 ffvelcdmda φ g D k I g k 0
91 eqid z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z = z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z
92 eleq1w z = k z J k J
93 fveq2 z = k J mVar I J mPoly R z = J mVar I J mPoly R k
94 fveq2 z = k I J mVar R z = I J mVar R k
95 94 fveq2d z = k algSc J mPoly I J mPoly R I J mVar R z = algSc J mPoly I J mPoly R I J mVar R k
96 92 93 95 ifbieq12d z = k if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z = if k J J mVar I J mPoly R k algSc J mPoly I J mPoly R I J mVar R k
97 simpr φ g D k I k I
98 51 ad2antrr φ g D k I J mVar I J mPoly R : J Base J mPoly I J mPoly R
99 98 ffvelcdmda φ g D k I k J J mVar I J mPoly R k Base J mPoly I J mPoly R
100 eldif k I J k I ¬ k J
101 56 adantr φ k I J algSc J mPoly I J mPoly R : Base I J mPoly R Base J mPoly I J mPoly R
102 60 ffvelcdmda φ k I J I J mVar R k Base I J mPoly R
103 101 102 ffvelcdmd φ k I J algSc J mPoly I J mPoly R I J mVar R k Base J mPoly I J mPoly R
104 100 103 sylan2br φ k I ¬ k J algSc J mPoly I J mPoly R I J mVar R k Base J mPoly I J mPoly R
105 104 anassrs φ k I ¬ k J algSc J mPoly I J mPoly R I J mVar R k Base J mPoly I J mPoly R
106 105 adantllr φ g D k I ¬ k J algSc J mPoly I J mPoly R I J mVar R k Base J mPoly I J mPoly R
107 99 106 ifclda φ g D k I if k J J mVar I J mPoly R k algSc J mPoly I J mPoly R I J mVar R k Base J mPoly I J mPoly R
108 91 96 97 107 fvmptd3 φ g D k I z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = if k J J mVar I J mPoly R k algSc J mPoly I J mPoly R I J mVar R k
109 108 107 eqeltrd φ g D k I z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k Base J mPoly I J mPoly R
110 79 18 87 90 109 mulgnn0cld φ g D k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k Base J mPoly I J mPoly R
111 110 fmpttd φ g D k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k : I Base J mPoly I J mPoly R
112 89 feqmptd φ g D g = k I g k
113 1 psrbagfsupp g D finSupp 0 g
114 113 adantl φ g D finSupp 0 g
115 112 114 eqbrtrrd φ g D finSupp 0 k I g k
116 79 80 18 mulg0 t Base J mPoly I J mPoly R 0 mulGrp J mPoly I J mPoly R t = 0 mulGrp J mPoly I J mPoly R
117 116 adantl φ g D t Base J mPoly I J mPoly R 0 mulGrp J mPoly I J mPoly R t = 0 mulGrp J mPoly I J mPoly R
118 fvexd φ g D 0 mulGrp J mPoly I J mPoly R V
119 115 117 90 109 118 fsuppssov1 φ g D finSupp 0 mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k
120 disjdifr I J J =
121 120 a1i φ g D I J J =
122 undifr J I I J J = I
123 5 122 sylib φ I J J = I
124 123 eqcomd φ I = I J J
125 124 adantr φ g D I = I J J
126 79 80 81 84 85 111 119 121 125 gsumsplit φ g D mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k I J J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k J
127 eldifi k I J k I
128 127 adantl φ g D k I J k I
129 127 107 sylan2 φ g D k I J if k J J mVar I J mPoly R k algSc J mPoly I J mPoly R I J mVar R k Base J mPoly I J mPoly R
130 91 96 128 129 fvmptd3 φ g D k I J z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = if k J J mVar I J mPoly R k algSc J mPoly I J mPoly R I J mVar R k
131 eldifn k I J ¬ k J
132 131 adantl φ g D k I J ¬ k J
133 132 iffalsed φ g D k I J if k J J mVar I J mPoly R k algSc J mPoly I J mPoly R I J mVar R k = algSc J mPoly I J mPoly R I J mVar R k
134 130 133 eqtrd φ g D k I J z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = algSc J mPoly I J mPoly R I J mVar R k
135 134 oveq2d φ g D k I J g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = g k mulGrp J mPoly I J mPoly R algSc J mPoly I J mPoly R I J mVar R k
136 eqid mulGrp Scalar J mPoly I J mPoly R = mulGrp Scalar J mPoly I J mPoly R
137 136 17 rhmmhm algSc J mPoly I J mPoly R Scalar J mPoly I J mPoly R RingHom J mPoly I J mPoly R algSc J mPoly I J mPoly R mulGrp Scalar J mPoly I J mPoly R MndHom mulGrp J mPoly I J mPoly R
138 30 137 syl φ algSc J mPoly I J mPoly R mulGrp Scalar J mPoly I J mPoly R MndHom mulGrp J mPoly I J mPoly R
139 138 ad2antrr φ g D k I J algSc J mPoly I J mPoly R mulGrp Scalar J mPoly I J mPoly R MndHom mulGrp J mPoly I J mPoly R
140 127 90 sylan2 φ g D k I J g k 0
141 102 adantlr φ g D k I J I J mVar R k Base I J mPoly R
142 39 fveq2d φ Base I J mPoly R = Base Scalar J mPoly I J mPoly R
143 142 ad2antrr φ g D k I J Base I J mPoly R = Base Scalar J mPoly I J mPoly R
144 141 143 eleqtrd φ g D k I J I J mVar R k Base Scalar J mPoly I J mPoly R
145 eqid Base Scalar J mPoly I J mPoly R = Base Scalar J mPoly I J mPoly R
146 136 145 mgpbas Base Scalar J mPoly I J mPoly R = Base mulGrp Scalar J mPoly I J mPoly R
147 eqid mulGrp Scalar J mPoly I J mPoly R = mulGrp Scalar J mPoly I J mPoly R
148 146 147 18 mhmmulg algSc J mPoly I J mPoly R mulGrp Scalar J mPoly I J mPoly R MndHom mulGrp J mPoly I J mPoly R g k 0 I J mVar R k Base Scalar J mPoly I J mPoly R algSc J mPoly I J mPoly R g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k = g k mulGrp J mPoly I J mPoly R algSc J mPoly I J mPoly R I J mVar R k
149 139 140 144 148 syl3anc φ g D k I J algSc J mPoly I J mPoly R g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k = g k mulGrp J mPoly I J mPoly R algSc J mPoly I J mPoly R I J mVar R k
150 135 149 eqtr4d φ g D k I J g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = algSc J mPoly I J mPoly R g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
151 150 mpteq2dva φ g D k I J g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = k I J algSc J mPoly I J mPoly R g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
152 difssd φ g D I J I
153 152 resmptd φ g D k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k I J = k I J g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k
154 56 adantr φ g D algSc J mPoly I J mPoly R : Base I J mPoly R Base J mPoly I J mPoly R
155 39 fveq2d φ mulGrp I J mPoly R = mulGrp Scalar J mPoly I J mPoly R
156 155 fveq2d φ mulGrp I J mPoly R = mulGrp Scalar J mPoly I J mPoly R
157 156 ad2antrr φ g D k I J mulGrp I J mPoly R = mulGrp Scalar J mPoly I J mPoly R
158 157 oveqd φ g D k I J g k mulGrp I J mPoly R I J mVar R k = g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
159 eqid mulGrp I J mPoly R = mulGrp I J mPoly R
160 159 55 mgpbas Base I J mPoly R = Base mulGrp I J mPoly R
161 eqid mulGrp I J mPoly R = mulGrp I J mPoly R
162 159 crngmgp I J mPoly R CRing mulGrp I J mPoly R CMnd
163 24 162 syl φ mulGrp I J mPoly R CMnd
164 163 cmnmndd φ mulGrp I J mPoly R Mnd
165 164 ad2antrr φ g D k I J mulGrp I J mPoly R Mnd
166 160 161 165 140 141 mulgnn0cld φ g D k I J g k mulGrp I J mPoly R I J mVar R k Base I J mPoly R
167 158 166 eqeltrrd φ g D k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k Base I J mPoly R
168 154 167 cofmpt φ g D algSc J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k = k I J algSc J mPoly I J mPoly R g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
169 151 153 168 3eqtr4d φ g D k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k I J = algSc J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
170 169 oveq2d φ g D mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k I J = mulGrp J mPoly I J mPoly R algSc J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
171 eqid 0 mulGrp Scalar J mPoly I J mPoly R = 0 mulGrp Scalar J mPoly I J mPoly R
172 39 24 eqeltrrd φ Scalar J mPoly I J mPoly R CRing
173 136 crngmgp Scalar J mPoly I J mPoly R CRing mulGrp Scalar J mPoly I J mPoly R CMnd
174 172 173 syl φ mulGrp Scalar J mPoly I J mPoly R CMnd
175 174 adantr φ g D mulGrp Scalar J mPoly I J mPoly R CMnd
176 86 adantr φ g D mulGrp J mPoly I J mPoly R Mnd
177 23 adantr φ g D I J V
178 138 adantr φ g D algSc J mPoly I J mPoly R mulGrp Scalar J mPoly I J mPoly R MndHom mulGrp J mPoly I J mPoly R
179 167 143 eleqtrd φ g D k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k Base Scalar J mPoly I J mPoly R
180 179 fmpttd φ g D k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k : I J Base Scalar J mPoly I J mPoly R
181 0zd φ g D 0
182 115 152 181 fmptssfisupp φ g D finSupp 0 k I J g k
183 142 eqimssd φ Base I J mPoly R Base Scalar J mPoly I J mPoly R
184 183 sselda φ u Base I J mPoly R u Base Scalar J mPoly I J mPoly R
185 184 adantlr φ g D u Base I J mPoly R u Base Scalar J mPoly I J mPoly R
186 146 171 147 mulg0 u Base Scalar J mPoly I J mPoly R 0 mulGrp Scalar J mPoly I J mPoly R u = 0 mulGrp Scalar J mPoly I J mPoly R
187 185 186 syl φ g D u Base I J mPoly R 0 mulGrp Scalar J mPoly I J mPoly R u = 0 mulGrp Scalar J mPoly I J mPoly R
188 fvexd φ g D 0 mulGrp Scalar J mPoly I J mPoly R V
189 182 187 140 141 188 fsuppssov1 φ g D finSupp 0 mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
190 146 171 175 176 177 178 180 189 gsummhm φ g D mulGrp J mPoly I J mPoly R algSc J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k = algSc J mPoly I J mPoly R mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
191 170 190 eqtrd φ g D mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k I J = algSc J mPoly I J mPoly R mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
192 5 adantr φ g D J I
193 192 resmptd φ g D k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k J = k J g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k
194 192 sselda φ g D k J k I
195 194 107 syldan φ g D k J if k J J mVar I J mPoly R k algSc J mPoly I J mPoly R I J mVar R k Base J mPoly I J mPoly R
196 91 96 194 195 fvmptd3 φ g D k J z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = if k J J mVar I J mPoly R k algSc J mPoly I J mPoly R I J mVar R k
197 iftrue k J if k J J mVar I J mPoly R k algSc J mPoly I J mPoly R I J mVar R k = J mVar I J mPoly R k
198 197 adantl φ g D k J if k J J mVar I J mPoly R k algSc J mPoly I J mPoly R I J mVar R k = J mVar I J mPoly R k
199 196 198 eqtrd φ g D k J z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = J mVar I J mPoly R k
200 199 oveq2d φ g D k J g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
201 200 mpteq2dva φ g D k J g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
202 193 201 eqtrd φ g D k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k J = k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
203 202 oveq2d φ g D mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k J = mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
204 191 203 oveq12d φ g D mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k I J J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k J = algSc J mPoly I J mPoly R mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
205 27 adantr φ g D J mPoly I J mPoly R AssAlg
206 146 171 175 177 180 189 gsumcl φ g D mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k Base Scalar J mPoly I J mPoly R
207 22 adantr φ g D J V
208 86 ad2antrr φ g D k J mulGrp J mPoly I J mPoly R Mnd
209 194 90 syldan φ g D k J g k 0
210 51 ffvelcdmda φ k J J mVar I J mPoly R k Base J mPoly I J mPoly R
211 210 adantlr φ g D k J J mVar I J mPoly R k Base J mPoly I J mPoly R
212 79 18 208 209 211 mulgnn0cld φ g D k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Base J mPoly I J mPoly R
213 212 fmpttd φ g D k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k : J Base J mPoly I J mPoly R
214 115 192 181 fmptssfisupp φ g D finSupp 0 k J g k
215 214 117 209 211 118 fsuppssov1 φ g D finSupp 0 mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
216 79 80 84 207 213 215 gsumcl φ g D mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Base J mPoly I J mPoly R
217 eqid J mPoly I J mPoly R = J mPoly I J mPoly R
218 10 28 145 16 19 217 asclmul1 J mPoly I J mPoly R AssAlg mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k Base Scalar J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Base J mPoly I J mPoly R algSc J mPoly I J mPoly R mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
219 205 206 216 218 syl3anc φ g D algSc J mPoly I J mPoly R mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
220 156 oveqd φ g k mulGrp I J mPoly R I J mVar R k = g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
221 220 mpteq2dv φ k I J g k mulGrp I J mPoly R I J mVar R k = k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
222 155 221 oveq12d φ mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k = mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
223 222 adantr φ g D mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k = mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k
224 223 oveq1d φ g D mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
225 219 224 eqtr4d φ g D algSc J mPoly I J mPoly R mulGrp Scalar J mPoly I J mPoly R k I J g k mulGrp Scalar J mPoly I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
226 126 204 225 3eqtrd φ g D mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
227 78 226 oveq12d φ g D algSc J mPoly I J mPoly R algSc I J mPoly R F g J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = algSc J mPoly I J mPoly R algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
228 75 76 ffvelcdmd φ g D algSc I J mPoly R F g Base I J mPoly R
229 142 adantr φ g D Base I J mPoly R = Base Scalar J mPoly I J mPoly R
230 228 229 eleqtrd φ g D algSc I J mPoly R F g Base Scalar J mPoly I J mPoly R
231 9 22 50 mpllmodd φ J mPoly I J mPoly R LMod
232 231 adantr φ g D J mPoly I J mPoly R LMod
233 eqid 0 mulGrp I J mPoly R = 0 mulGrp I J mPoly R
234 163 adantr φ g D mulGrp I J mPoly R CMnd
235 166 fmpttd φ g D k I J g k mulGrp I J mPoly R I J mVar R k : I J Base I J mPoly R
236 160 233 161 mulg0 e Base I J mPoly R 0 mulGrp I J mPoly R e = 0 mulGrp I J mPoly R
237 236 adantl φ g D e Base I J mPoly R 0 mulGrp I J mPoly R e = 0 mulGrp I J mPoly R
238 fvexd φ g D 0 mulGrp I J mPoly R V
239 182 237 140 141 238 fsuppssov1 φ g D finSupp 0 mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k
240 160 233 234 177 235 239 gsumcl φ g D mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k Base I J mPoly R
241 240 229 eleqtrd φ g D mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k Base Scalar J mPoly I J mPoly R
242 16 28 217 145 232 241 216 lmodvscld φ g D mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Base J mPoly I J mPoly R
243 10 28 145 16 19 217 asclmul1 J mPoly I J mPoly R AssAlg algSc I J mPoly R F g Base Scalar J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Base J mPoly I J mPoly R algSc J mPoly I J mPoly R algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
244 205 230 242 243 syl3anc φ g D algSc J mPoly I J mPoly R algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
245 227 244 eqtrd φ g D algSc J mPoly I J mPoly R algSc I J mPoly R F g J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
246 245 mpteq2dva φ g D algSc J mPoly I J mPoly R algSc I J mPoly R F g J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
247 246 oveq2d φ J mPoly I J mPoly R g D algSc J mPoly I J mPoly R algSc I J mPoly R F g J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k I g k mulGrp J mPoly I J mPoly R z I if z J J mVar I J mPoly R z algSc J mPoly I J mPoly R I J mVar R z k = J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
248 12 68 247 3eqtrd φ I selectVars R J F = J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
249 248 fveq1d φ I selectVars R J F Y J = J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
250 249 fveq1d φ I selectVars R J F Y J Y I J = J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J
251 eqid 0 I J mPoly R = 0 I J mPoly R
252 50 ringcmnd φ I J mPoly R CMnd
253 4 crnggrpd φ R Grp
254 253 grpmndd φ R Mnd
255 ovex 0 I V
256 1 255 rabex2 D V
257 256 a1i φ D V
258 eqid y 0 I J | y -1 Fin = y 0 I J | y -1 Fin
259 eqid v Base I J mPoly R v Y I J = v Base I J mPoly R v Y I J
260 difssd φ I J I
261 1 258 21 260 7 psrbagres φ Y I J y 0 I J | y -1 Fin
262 8 55 258 259 23 253 261 mplmapghm φ v Base I J mPoly R v Y I J I J mPoly R GrpHom R
263 ghmmhm v Base I J mPoly R v Y I J I J mPoly R GrpHom R v Base I J mPoly R v Y I J I J mPoly R MndHom R
264 262 263 syl φ v Base I J mPoly R v Y I J I J mPoly R MndHom R
265 eqid x 0 J | x -1 Fin = x 0 J | x -1 Fin
266 simpr φ w Base J mPoly I J mPoly R w Base J mPoly I J mPoly R
267 9 55 16 265 266 mplelf φ w Base J mPoly I J mPoly R w : x 0 J | x -1 Fin Base I J mPoly R
268 1 265 21 5 7 psrbagres φ Y J x 0 J | x -1 Fin
269 268 adantr φ w Base J mPoly I J mPoly R Y J x 0 J | x -1 Fin
270 267 269 ffvelcdmd φ w Base J mPoly I J mPoly R w Y J Base I J mPoly R
271 270 fmpttd φ w Base J mPoly I J mPoly R w Y J : Base J mPoly I J mPoly R Base I J mPoly R
272 16 28 217 145 232 230 242 lmodvscld φ g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Base J mPoly I J mPoly R
273 272 fmpttd φ g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k : D Base J mPoly I J mPoly R
274 271 273 fcod φ w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k : D Base I J mPoly R
275 fvexd φ 0 I J mPoly R V
276 25 crngringd φ J mPoly I J mPoly R Ring
277 eqid 0 J mPoly I J mPoly R = 0 J mPoly I J mPoly R
278 16 277 ring0cl J mPoly I J mPoly R Ring 0 J mPoly I J mPoly R Base J mPoly I J mPoly R
279 276 278 syl φ 0 J mPoly I J mPoly R Base J mPoly I J mPoly R
280 ssidd φ Base J mPoly I J mPoly R Base J mPoly I J mPoly R
281 256 mptex g D algSc I J mPoly R F g V
282 281 a1i φ g D algSc I J mPoly R F g V
283 fvexd φ 0 Scalar J mPoly I J mPoly R V
284 funmpt Fun g D algSc I J mPoly R F g
285 284 a1i φ Fun g D algSc I J mPoly R F g
286 eqid 0 R = 0 R
287 2 3 286 6 4 mplelsfi φ finSupp 0 R F
288 ssidd φ F supp 0 R F supp 0 R
289 fvexd φ 0 R V
290 70 288 6 289 suppssrg φ g D supp 0 R F F g = 0 R
291 290 fveq2d φ g D supp 0 R F algSc I J mPoly R F g = algSc I J mPoly R 0 R
292 8 33 286 251 23 59 mplascl0 φ algSc I J mPoly R 0 R = 0 I J mPoly R
293 39 fveq2d φ 0 I J mPoly R = 0 Scalar J mPoly I J mPoly R
294 292 293 eqtrd φ algSc I J mPoly R 0 R = 0 Scalar J mPoly I J mPoly R
295 294 adantr φ g D supp 0 R F algSc I J mPoly R 0 R = 0 Scalar J mPoly I J mPoly R
296 291 295 eqtrd φ g D supp 0 R F algSc I J mPoly R F g = 0 Scalar J mPoly I J mPoly R
297 296 257 suppss2 φ g D algSc I J mPoly R F g supp 0 Scalar J mPoly I J mPoly R F supp 0 R
298 282 283 285 287 297 fsuppsssuppgd φ finSupp 0 Scalar J mPoly I J mPoly R g D algSc I J mPoly R F g
299 eqid 0 Scalar J mPoly I J mPoly R = 0 Scalar J mPoly I J mPoly R
300 16 28 217 299 277 lmod0vs J mPoly I J mPoly R LMod f Base J mPoly I J mPoly R 0 Scalar J mPoly I J mPoly R J mPoly I J mPoly R f = 0 J mPoly I J mPoly R
301 231 300 sylan φ f Base J mPoly I J mPoly R 0 Scalar J mPoly I J mPoly R J mPoly I J mPoly R f = 0 J mPoly I J mPoly R
302 fvexd φ 0 J mPoly I J mPoly R V
303 298 301 228 242 302 fsuppssov1 φ finSupp 0 J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
304 eqid w Base J mPoly I J mPoly R w Y J = w Base J mPoly I J mPoly R w Y J
305 24 crnggrpd φ I J mPoly R Grp
306 9 16 265 304 22 305 268 mplmapghm φ w Base J mPoly I J mPoly R w Y J J mPoly I J mPoly R GrpHom I J mPoly R
307 ghmmhm w Base J mPoly I J mPoly R w Y J J mPoly I J mPoly R GrpHom I J mPoly R w Base J mPoly I J mPoly R w Y J J mPoly I J mPoly R MndHom I J mPoly R
308 306 307 syl φ w Base J mPoly I J mPoly R w Y J J mPoly I J mPoly R MndHom I J mPoly R
309 277 251 mhm0 w Base J mPoly I J mPoly R w Y J J mPoly I J mPoly R MndHom I J mPoly R w Base J mPoly I J mPoly R w Y J 0 J mPoly I J mPoly R = 0 I J mPoly R
310 308 309 syl φ w Base J mPoly I J mPoly R w Y J 0 J mPoly I J mPoly R = 0 I J mPoly R
311 275 279 273 271 280 257 48 303 310 fsuppcor φ finSupp 0 I J mPoly R w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
312 55 251 252 254 257 264 274 311 gsummhm φ R v Base I J mPoly R v Y I J w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = v Base I J mPoly R v Y I J I J mPoly R w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
313 fveq1 v = I J mPoly R w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k v Y I J = I J mPoly R w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y I J
314 55 251 252 257 274 311 gsumcl φ I J mPoly R w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Base I J mPoly R
315 fvexd φ I J mPoly R w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y I J V
316 259 313 314 315 fvmptd3 φ v Base I J mPoly R v Y I J I J mPoly R w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = I J mPoly R w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y I J
317 276 ringcmnd φ J mPoly I J mPoly R CMnd
318 305 grpmndd φ I J mPoly R Mnd
319 16 277 317 318 257 308 273 303 gsummhm φ I J mPoly R w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = w Base J mPoly I J mPoly R w Y J J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
320 fveq1 w = J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k w Y J = J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
321 16 277 317 257 273 303 gsumcl φ J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Base J mPoly I J mPoly R
322 fvexd φ J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J V
323 304 320 321 322 fvmptd3 φ w Base J mPoly I J mPoly R w Y J J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
324 319 323 eqtrd φ I J mPoly R w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
325 324 fveq1d φ I J mPoly R w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y I J = J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J
326 312 316 325 3eqtrrd φ J mPoly I J mPoly R g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J = R v Base I J mPoly R v Y I J w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
327 9 55 16 265 272 mplelf φ g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k : x 0 J | x -1 Fin Base I J mPoly R
328 268 adantr φ g D Y J x 0 J | x -1 Fin
329 327 328 ffvelcdmd φ g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Base I J mPoly R
330 eqidd φ g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
331 eqidd φ w Base J mPoly I J mPoly R w Y J = w Base J mPoly I J mPoly R w Y J
332 fveq1 w = algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k w Y J = algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
333 272 330 331 332 fmptco φ w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
334 eqidd φ v Base I J mPoly R v Y I J = v Base I J mPoly R v Y I J
335 fveq1 v = algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J v Y I J = algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J
336 329 333 334 335 fmptco φ v Base I J mPoly R v Y I J w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J
337 eqid I J mPoly R = I J mPoly R
338 9 217 55 16 337 265 228 242 328 mplvscaval φ g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J = algSc I J mPoly R F g I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
339 9 217 55 16 337 265 240 216 328 mplvscaval φ g D mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J = mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
340 339 oveq2d φ g D algSc I J mPoly R F g I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J = algSc I J mPoly R F g I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
341 32 adantr φ g D I J mPoly R AssAlg
342 37 fveq2d φ Base R = Base Scalar I J mPoly R
343 342 adantr φ g D Base R = Base Scalar I J mPoly R
344 76 343 eleqtrd φ g D F g Base Scalar I J mPoly R
345 50 adantr φ g D I J mPoly R Ring
346 9 55 16 265 216 mplelf φ g D mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k : x 0 J | x -1 Fin Base I J mPoly R
347 346 328 ffvelcdmd φ g D mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Base I J mPoly R
348 55 337 345 240 347 ringcld φ g D mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Base I J mPoly R
349 eqid Base Scalar I J mPoly R = Base Scalar I J mPoly R
350 eqid I J mPoly R = I J mPoly R
351 33 34 349 55 337 350 asclmul1 I J mPoly R AssAlg F g Base Scalar I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Base I J mPoly R algSc I J mPoly R F g I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J = F g I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
352 341 344 348 351 syl3anc φ g D algSc I J mPoly R F g I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J = F g I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
353 338 340 352 3eqtrd φ g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J = F g I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
354 353 fveq1d φ g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J = F g I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J
355 eqid R = R
356 261 adantr φ g D Y I J y 0 I J | y -1 Fin
357 8 350 69 55 355 258 76 348 356 mplvscaval φ g D F g I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J = F g R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J
358 ovif2 i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R if Y J = g J 1 I J mPoly R 0 I J mPoly R = if Y J = g J i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 1 I J mPoly R i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 0 I J mPoly R
359 358 fveq1i i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R if Y J = g J 1 I J mPoly R 0 I J mPoly R Y I J = if Y J = g J i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 1 I J mPoly R i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 0 I J mPoly R Y I J
360 iffv if Y J = g J i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 1 I J mPoly R i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 0 I J mPoly R Y I J = if Y J = g J i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 1 I J mPoly R Y I J i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 0 I J mPoly R Y I J
361 359 360 eqtri i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R if Y J = g J 1 I J mPoly R 0 I J mPoly R Y I J = if Y J = g J i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 1 I J mPoly R Y I J i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 0 I J mPoly R Y I J
362 eqeq1 i = Y I J i = g I J Y I J = g I J
363 362 ifbid i = Y I J if i = g I J 1 R 0 R = if Y I J = g I J 1 R 0 R
364 eqid 1 I J mPoly R = 1 I J mPoly R
365 eqid 1 R = 1 R
366 59 adantr φ g D R Ring
367 1 258 85 152 72 psrbagres φ g D g I J y 0 I J | y -1 Fin
368 8 55 286 365 258 177 366 367 mplmon φ g D i y 0 I J | y -1 Fin if i = g I J 1 R 0 R Base I J mPoly R
369 55 337 364 345 368 ringridmd φ g D i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 1 I J mPoly R = i y 0 I J | y -1 Fin if i = g I J 1 R 0 R
370 fvexd φ g D 1 R V
371 fvexd φ g D 0 R V
372 370 371 ifcld φ g D if Y I J = g I J 1 R 0 R V
373 363 369 356 372 fvmptd4 φ g D i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 1 I J mPoly R Y I J = if Y I J = g I J 1 R 0 R
374 55 337 251 345 368 ringrzd φ g D i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 0 I J mPoly R = 0 I J mPoly R
375 8 258 286 251 23 253 mpl0 φ 0 I J mPoly R = y 0 I J | y -1 Fin × 0 R
376 375 adantr φ g D 0 I J mPoly R = y 0 I J | y -1 Fin × 0 R
377 374 376 eqtrd φ g D i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 0 I J mPoly R = y 0 I J | y -1 Fin × 0 R
378 377 fveq1d φ g D i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 0 I J mPoly R Y I J = y 0 I J | y -1 Fin × 0 R Y I J
379 fvex 0 R V
380 379 fvconst2 Y I J y 0 I J | y -1 Fin y 0 I J | y -1 Fin × 0 R Y I J = 0 R
381 356 380 syl φ g D y 0 I J | y -1 Fin × 0 R Y I J = 0 R
382 378 381 eqtrd φ g D i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 0 I J mPoly R Y I J = 0 R
383 373 382 ifeq12d φ g D if Y J = g J i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 1 I J mPoly R Y I J i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R 0 I J mPoly R Y I J = if Y J = g J if Y I J = g I J 1 R 0 R 0 R
384 361 383 eqtrid φ g D i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R if Y J = g J 1 I J mPoly R 0 I J mPoly R Y I J = if Y J = g J if Y I J = g I J 1 R 0 R 0 R
385 384 oveq2d φ g D F g R i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R if Y J = g J 1 I J mPoly R 0 I J mPoly R Y I J = F g R if Y J = g J if Y I J = g I J 1 R 0 R 0 R
386 ifan if Y J = g J Y I J = g I J 1 R 0 R = if Y J = g J if Y I J = g I J 1 R 0 R 0 R
387 386 oveq2i F g R if Y J = g J Y I J = g I J 1 R 0 R = F g R if Y J = g J if Y I J = g I J 1 R 0 R 0 R
388 1 psrbagf Y D Y : I 0
389 7 388 syl φ Y : I 0
390 389 ffnd φ Y Fn I
391 390 adantr φ g D Y Fn I
392 undif J I J I J = I
393 5 392 sylib φ J I J = I
394 393 adantr φ g D J I J = I
395 394 fneq2d φ g D Y Fn J I J Y Fn I
396 391 395 mpbird φ g D Y Fn J I J
397 89 ffnd φ g D g Fn I
398 394 fneq2d φ g D g Fn J I J g Fn I
399 397 398 mpbird φ g D g Fn J I J
400 eqfnun Y Fn J I J g Fn J I J Y = g Y J = g J Y I J = g I J
401 396 399 400 syl2anc φ g D Y = g Y J = g J Y I J = g I J
402 401 ifbid φ g D if Y = g 1 R 0 R = if Y J = g J Y I J = g I J 1 R 0 R
403 402 oveq2d φ g D F g R if Y = g 1 R 0 R = F g R if Y J = g J Y I J = g I J 1 R 0 R
404 ovif2 F g R if Y = g 1 R 0 R = if Y = g F g R 1 R F g R 0 R
405 403 404 eqtr3di φ g D F g R if Y J = g J Y I J = g I J 1 R 0 R = if Y = g F g R 1 R F g R 0 R
406 387 405 eqtr3id φ g D F g R if Y J = g J if Y I J = g I J 1 R 0 R 0 R = if Y = g F g R 1 R F g R 0 R
407 385 406 eqtrd φ g D F g R i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R if Y J = g J 1 I J mPoly R 0 I J mPoly R Y I J = if Y = g F g R 1 R F g R 0 R
408 4 adantr φ g D R CRing
409 8 258 286 365 177 159 161 58 408 367 mplcoe2 φ g D i y 0 I J | y -1 Fin if i = g I J 1 R 0 R = mulGrp I J mPoly R k I J g I J k mulGrp I J mPoly R I J mVar R k
410 simpr φ g D k I J k I J
411 410 fvresd φ g D k I J g I J k = g k
412 411 oveq1d φ g D k I J g I J k mulGrp I J mPoly R I J mVar R k = g k mulGrp I J mPoly R I J mVar R k
413 412 mpteq2dva φ g D k I J g I J k mulGrp I J mPoly R I J mVar R k = k I J g k mulGrp I J mPoly R I J mVar R k
414 413 oveq2d φ g D mulGrp I J mPoly R k I J g I J k mulGrp I J mPoly R I J mVar R k = mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k
415 409 414 eqtrd φ g D i y 0 I J | y -1 Fin if i = g I J 1 R 0 R = mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k
416 eqid j x 0 J | x -1 Fin if j = g J 1 I J mPoly R 0 I J mPoly R = j x 0 J | x -1 Fin if j = g J 1 I J mPoly R 0 I J mPoly R
417 eqeq1 j = Y J j = g J Y J = g J
418 417 ifbid j = Y J if j = g J 1 I J mPoly R 0 I J mPoly R = if Y J = g J 1 I J mPoly R 0 I J mPoly R
419 fvexd φ g D 1 I J mPoly R V
420 fvexd φ g D 0 I J mPoly R V
421 419 420 ifcld φ g D if Y J = g J 1 I J mPoly R 0 I J mPoly R V
422 416 418 328 421 fvmptd3 φ g D j x 0 J | x -1 Fin if j = g J 1 I J mPoly R 0 I J mPoly R Y J = if Y J = g J 1 I J mPoly R 0 I J mPoly R
423 24 adantr φ g D I J mPoly R CRing
424 1 265 85 192 72 psrbagres φ g D g J x 0 J | x -1 Fin
425 9 265 251 364 207 17 18 49 423 424 mplcoe2 φ g D j x 0 J | x -1 Fin if j = g J 1 I J mPoly R 0 I J mPoly R = mulGrp J mPoly I J mPoly R k J g J k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
426 simpr φ g D k J k J
427 426 fvresd φ g D k J g J k = g k
428 427 oveq1d φ g D k J g J k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
429 428 mpteq2dva φ g D k J g J k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
430 429 oveq2d φ g D mulGrp J mPoly I J mPoly R k J g J k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
431 425 430 eqtrd φ g D j x 0 J | x -1 Fin if j = g J 1 I J mPoly R 0 I J mPoly R = mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k
432 431 fveq1d φ g D j x 0 J | x -1 Fin if j = g J 1 I J mPoly R 0 I J mPoly R Y J = mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
433 422 432 eqtr3d φ g D if Y J = g J 1 I J mPoly R 0 I J mPoly R = mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
434 415 433 oveq12d φ g D i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R if Y J = g J 1 I J mPoly R 0 I J mPoly R = mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J
435 434 fveq1d φ g D i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R if Y J = g J 1 I J mPoly R 0 I J mPoly R Y I J = mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J
436 435 oveq2d φ g D F g R i y 0 I J | y -1 Fin if i = g I J 1 R 0 R I J mPoly R if Y J = g J 1 I J mPoly R 0 I J mPoly R Y I J = F g R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J
437 69 355 365 366 76 ringridmd φ g D F g R 1 R = F g
438 69 355 286 366 76 ringrzd φ g D F g R 0 R = 0 R
439 437 438 ifeq12d φ g D if Y = g F g R 1 R F g R 0 R = if Y = g F g 0 R
440 407 436 439 3eqtr3d φ g D F g R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J = if Y = g F g 0 R
441 354 357 440 3eqtrd φ g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J = if Y = g F g 0 R
442 441 mpteq2dva φ g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k Y J Y I J = g D if Y = g F g 0 R
443 336 442 eqtrd φ v Base I J mPoly R v Y I J w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = g D if Y = g F g 0 R
444 443 oveq2d φ R v Base I J mPoly R v Y I J w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = R g D if Y = g F g 0 R
445 59 ringcmnd φ R CMnd
446 69 286 ring0cl R Ring 0 R Base R
447 59 446 syl φ 0 R Base R
448 447 adantr φ g D 0 R Base R
449 76 448 ifcld φ g D if Y = g F g 0 R Base R
450 449 fmpttd φ g D if Y = g F g 0 R : D Base R
451 eldifsnneq g D Y ¬ g = Y
452 451 neqcomd g D Y ¬ Y = g
453 452 iffalsed g D Y if Y = g F g 0 R = 0 R
454 453 adantl φ g D Y if Y = g F g 0 R = 0 R
455 454 257 suppss2 φ g D if Y = g F g 0 R supp 0 R Y
456 257 mptexd φ g D if Y = g F g 0 R V
457 funmpt Fun g D if Y = g F g 0 R
458 457 a1i φ Fun g D if Y = g F g 0 R
459 snfi Y Fin
460 459 a1i φ Y Fin
461 460 455 ssfid φ g D if Y = g F g 0 R supp 0 R Fin
462 456 447 458 461 isfsuppd φ finSupp 0 R g D if Y = g F g 0 R
463 69 286 445 257 450 455 462 gsumres φ R g D if Y = g F g 0 R Y = R g D if Y = g F g 0 R
464 7 snssd φ Y D
465 464 resmptd φ g D if Y = g F g 0 R Y = g Y if Y = g F g 0 R
466 465 oveq2d φ R g D if Y = g F g 0 R Y = R g Y if Y = g F g 0 R
467 70 7 ffvelcdmd φ F Y Base R
468 iftrue Y = g if Y = g F g 0 R = F g
469 468 eqcoms g = Y if Y = g F g 0 R = F g
470 fveq2 g = Y F g = F Y
471 469 470 eqtrd g = Y if Y = g F g 0 R = F Y
472 69 471 gsumsn R Mnd Y D F Y Base R R g Y if Y = g F g 0 R = F Y
473 254 7 467 472 syl3anc φ R g Y if Y = g F g 0 R = F Y
474 466 473 eqtrd φ R g D if Y = g F g 0 R Y = F Y
475 444 463 474 3eqtr2d φ R v Base I J mPoly R v Y I J w Base J mPoly I J mPoly R w Y J g D algSc I J mPoly R F g J mPoly I J mPoly R mulGrp I J mPoly R k I J g k mulGrp I J mPoly R I J mVar R k J mPoly I J mPoly R mulGrp J mPoly I J mPoly R k J g k mulGrp J mPoly I J mPoly R J mVar I J mPoly R k = F Y
476 250 326 475 3eqtrd φ I selectVars R J F Y J Y I J = F Y