Metamath Proof Explorer


Theorem seq1

Description: Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion seq1 M seq M + ˙ F M = F M

Proof

Step Hyp Ref Expression
1 seqeq1 M = if M M 0 seq M + ˙ F = seq if M M 0 + ˙ F
2 id M = if M M 0 M = if M M 0
3 1 2 fveq12d M = if M M 0 seq M + ˙ F M = seq if M M 0 + ˙ F if M M 0
4 fveq2 M = if M M 0 F M = F if M M 0
5 3 4 eqeq12d M = if M M 0 seq M + ˙ F M = F M seq if M M 0 + ˙ F if M M 0 = F if M M 0
6 0z 0
7 6 elimel if M M 0
8 eqid rec x V x + 1 if M M 0 ω = rec x V x + 1 if M M 0 ω
9 fvex F if M M 0 V
10 eqid rec x V , y V x + 1 x z V , w V w + ˙ F z + 1 y if M M 0 F if M M 0 ω = rec x V , y V x + 1 x z V , w V w + ˙ F z + 1 y if M M 0 F if M M 0 ω
11 10 seqval seq if M M 0 + ˙ F = ran rec x V , y V x + 1 x z V , w V w + ˙ F z + 1 y if M M 0 F if M M 0 ω
12 7 8 9 10 11 uzrdg0i seq if M M 0 + ˙ F if M M 0 = F if M M 0
13 5 12 dedth M seq M + ˙ F M = F M