Metamath Proof Explorer


Theorem seq1i

Description: Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypotheses seq1i.1 M
seq1i.2 φ F M = A
Assertion seq1i φ seq M + ˙ F M = A

Proof

Step Hyp Ref Expression
1 seq1i.1 M
2 seq1i.2 φ F M = A
3 seq1 M seq M + ˙ F M = F M
4 1 3 ax-mp seq M + ˙ F M = F M
5 4 2 eqtrid φ seq M + ˙ F M = A