Metamath Proof Explorer


Theorem seqabs

Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by Mario Carneiro, 26-Mar-2014) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqabs.1 φ N M
seqabs.2 φ k M N F k
seqabs.3 φ k M N G k = F k
Assertion seqabs φ seq M + F N seq M + G N

Proof

Step Hyp Ref Expression
1 seqabs.1 φ N M
2 seqabs.2 φ k M N F k
3 seqabs.3 φ k M N G k = F k
4 fzfid φ M N Fin
5 4 2 fsumabs φ k = M N F k k = M N F k
6 eqidd φ k M N F k = F k
7 6 1 2 fsumser φ k = M N F k = seq M + F N
8 7 fveq2d φ k = M N F k = seq M + F N
9 abscl F k F k
10 9 recnd F k F k
11 2 10 syl φ k M N F k
12 3 1 11 fsumser φ k = M N F k = seq M + G N
13 5 8 12 3brtr3d φ seq M + F N seq M + G N