Metamath Proof Explorer


Theorem seqcaopr

Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 30-May-2014)

Ref Expression
Hypotheses seqcaopr.1 φ x S y S x + ˙ y S
seqcaopr.2 φ x S y S x + ˙ y = y + ˙ x
seqcaopr.3 φ x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
seqcaopr.4 φ N M
seqcaopr.5 φ k M N F k S
seqcaopr.6 φ k M N G k S
seqcaopr.7 φ k M N H k = F k + ˙ G k
Assertion seqcaopr φ seq M + ˙ H N = seq M + ˙ F N + ˙ seq M + ˙ G N

Proof

Step Hyp Ref Expression
1 seqcaopr.1 φ x S y S x + ˙ y S
2 seqcaopr.2 φ x S y S x + ˙ y = y + ˙ x
3 seqcaopr.3 φ x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
4 seqcaopr.4 φ N M
5 seqcaopr.5 φ k M N F k S
6 seqcaopr.6 φ k M N G k S
7 seqcaopr.7 φ k M N H k = F k + ˙ G k
8 1 caovclg φ a S b S a + ˙ b S
9 simpl φ a S b S c S d S φ
10 simprrl φ a S b S c S d S c S
11 simprlr φ a S b S c S d S b S
12 2 caovcomg φ c S b S c + ˙ b = b + ˙ c
13 9 10 11 12 syl12anc φ a S b S c S d S c + ˙ b = b + ˙ c
14 13 oveq1d φ a S b S c S d S c + ˙ b + ˙ d = b + ˙ c + ˙ d
15 simprrr φ a S b S c S d S d S
16 3 caovassg φ c S b S d S c + ˙ b + ˙ d = c + ˙ b + ˙ d
17 9 10 11 15 16 syl13anc φ a S b S c S d S c + ˙ b + ˙ d = c + ˙ b + ˙ d
18 3 caovassg φ b S c S d S b + ˙ c + ˙ d = b + ˙ c + ˙ d
19 9 11 10 15 18 syl13anc φ a S b S c S d S b + ˙ c + ˙ d = b + ˙ c + ˙ d
20 14 17 19 3eqtr3d φ a S b S c S d S c + ˙ b + ˙ d = b + ˙ c + ˙ d
21 20 oveq2d φ a S b S c S d S a + ˙ c + ˙ b + ˙ d = a + ˙ b + ˙ c + ˙ d
22 simprll φ a S b S c S d S a S
23 1 caovclg φ b S d S b + ˙ d S
24 9 11 15 23 syl12anc φ a S b S c S d S b + ˙ d S
25 3 caovassg φ a S c S b + ˙ d S a + ˙ c + ˙ b + ˙ d = a + ˙ c + ˙ b + ˙ d
26 9 22 10 24 25 syl13anc φ a S b S c S d S a + ˙ c + ˙ b + ˙ d = a + ˙ c + ˙ b + ˙ d
27 1 caovclg φ c S d S c + ˙ d S
28 27 adantrl φ a S b S c S d S c + ˙ d S
29 3 caovassg φ a S b S c + ˙ d S a + ˙ b + ˙ c + ˙ d = a + ˙ b + ˙ c + ˙ d
30 9 22 11 28 29 syl13anc φ a S b S c S d S a + ˙ b + ˙ c + ˙ d = a + ˙ b + ˙ c + ˙ d
31 21 26 30 3eqtr4d φ a S b S c S d S a + ˙ c + ˙ b + ˙ d = a + ˙ b + ˙ c + ˙ d
32 8 8 31 4 5 6 7 seqcaopr2 φ seq M + ˙ H N = seq M + ˙ F N + ˙ seq M + ˙ G N