Metamath Proof Explorer


Theorem seqcaopr2

Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014)

Ref Expression
Hypotheses seqcaopr2.1 φ x S y S x + ˙ y S
seqcaopr2.2 φ x S y S x Q y S
seqcaopr2.3 φ x S y S z S w S x Q z + ˙ y Q w = x + ˙ y Q z + ˙ w
seqcaopr2.4 φ N M
seqcaopr2.5 φ k M N F k S
seqcaopr2.6 φ k M N G k S
seqcaopr2.7 φ k M N H k = F k Q G k
Assertion seqcaopr2 φ seq M + ˙ H N = seq M + ˙ F N Q seq M + ˙ G N

Proof

Step Hyp Ref Expression
1 seqcaopr2.1 φ x S y S x + ˙ y S
2 seqcaopr2.2 φ x S y S x Q y S
3 seqcaopr2.3 φ x S y S z S w S x Q z + ˙ y Q w = x + ˙ y Q z + ˙ w
4 seqcaopr2.4 φ N M
5 seqcaopr2.5 φ k M N F k S
6 seqcaopr2.6 φ k M N G k S
7 seqcaopr2.7 φ k M N H k = F k Q G k
8 elfzouz n M ..^ N n M
9 8 adantl φ n M ..^ N n M
10 elfzouz2 n M ..^ N N n
11 10 adantl φ n M ..^ N N n
12 fzss2 N n M n M N
13 11 12 syl φ n M ..^ N M n M N
14 13 sselda φ n M ..^ N x M n x M N
15 6 ralrimiva φ k M N G k S
16 15 adantr φ n M ..^ N k M N G k S
17 fveq2 k = x G k = G x
18 17 eleq1d k = x G k S G x S
19 18 rspccva k M N G k S x M N G x S
20 16 19 sylan φ n M ..^ N x M N G x S
21 14 20 syldan φ n M ..^ N x M n G x S
22 1 adantlr φ n M ..^ N x S y S x + ˙ y S
23 9 21 22 seqcl φ n M ..^ N seq M + ˙ G n S
24 fzofzp1 n M ..^ N n + 1 M N
25 fveq2 k = n + 1 G k = G n + 1
26 25 eleq1d k = n + 1 G k S G n + 1 S
27 26 rspccva k M N G k S n + 1 M N G n + 1 S
28 15 24 27 syl2an φ n M ..^ N G n + 1 S
29 5 ralrimiva φ k M N F k S
30 fveq2 k = x F k = F x
31 30 eleq1d k = x F k S F x S
32 31 rspccva k M N F k S x M N F x S
33 29 32 sylan φ x M N F x S
34 33 adantlr φ n M ..^ N x M N F x S
35 14 34 syldan φ n M ..^ N x M n F x S
36 9 35 22 seqcl φ n M ..^ N seq M + ˙ F n S
37 fveq2 k = n + 1 F k = F n + 1
38 37 eleq1d k = n + 1 F k S F n + 1 S
39 38 rspccva k M N F k S n + 1 M N F n + 1 S
40 29 24 39 syl2an φ n M ..^ N F n + 1 S
41 3 anassrs φ x S y S z S w S x Q z + ˙ y Q w = x + ˙ y Q z + ˙ w
42 41 ralrimivva φ x S y S z S w S x Q z + ˙ y Q w = x + ˙ y Q z + ˙ w
43 42 ralrimivva φ x S y S z S w S x Q z + ˙ y Q w = x + ˙ y Q z + ˙ w
44 43 adantr φ n M ..^ N x S y S z S w S x Q z + ˙ y Q w = x + ˙ y Q z + ˙ w
45 oveq1 x = seq M + ˙ F n x Q z = seq M + ˙ F n Q z
46 45 oveq1d x = seq M + ˙ F n x Q z + ˙ y Q w = seq M + ˙ F n Q z + ˙ y Q w
47 oveq1 x = seq M + ˙ F n x + ˙ y = seq M + ˙ F n + ˙ y
48 47 oveq1d x = seq M + ˙ F n x + ˙ y Q z + ˙ w = seq M + ˙ F n + ˙ y Q z + ˙ w
49 46 48 eqeq12d x = seq M + ˙ F n x Q z + ˙ y Q w = x + ˙ y Q z + ˙ w seq M + ˙ F n Q z + ˙ y Q w = seq M + ˙ F n + ˙ y Q z + ˙ w
50 49 2ralbidv x = seq M + ˙ F n z S w S x Q z + ˙ y Q w = x + ˙ y Q z + ˙ w z S w S seq M + ˙ F n Q z + ˙ y Q w = seq M + ˙ F n + ˙ y Q z + ˙ w
51 oveq1 y = F n + 1 y Q w = F n + 1 Q w
52 51 oveq2d y = F n + 1 seq M + ˙ F n Q z + ˙ y Q w = seq M + ˙ F n Q z + ˙ F n + 1 Q w
53 oveq2 y = F n + 1 seq M + ˙ F n + ˙ y = seq M + ˙ F n + ˙ F n + 1
54 53 oveq1d y = F n + 1 seq M + ˙ F n + ˙ y Q z + ˙ w = seq M + ˙ F n + ˙ F n + 1 Q z + ˙ w
55 52 54 eqeq12d y = F n + 1 seq M + ˙ F n Q z + ˙ y Q w = seq M + ˙ F n + ˙ y Q z + ˙ w seq M + ˙ F n Q z + ˙ F n + 1 Q w = seq M + ˙ F n + ˙ F n + 1 Q z + ˙ w
56 55 2ralbidv y = F n + 1 z S w S seq M + ˙ F n Q z + ˙ y Q w = seq M + ˙ F n + ˙ y Q z + ˙ w z S w S seq M + ˙ F n Q z + ˙ F n + 1 Q w = seq M + ˙ F n + ˙ F n + 1 Q z + ˙ w
57 50 56 rspc2va seq M + ˙ F n S F n + 1 S x S y S z S w S x Q z + ˙ y Q w = x + ˙ y Q z + ˙ w z S w S seq M + ˙ F n Q z + ˙ F n + 1 Q w = seq M + ˙ F n + ˙ F n + 1 Q z + ˙ w
58 36 40 44 57 syl21anc φ n M ..^ N z S w S seq M + ˙ F n Q z + ˙ F n + 1 Q w = seq M + ˙ F n + ˙ F n + 1 Q z + ˙ w
59 oveq2 z = seq M + ˙ G n seq M + ˙ F n Q z = seq M + ˙ F n Q seq M + ˙ G n
60 59 oveq1d z = seq M + ˙ G n seq M + ˙ F n Q z + ˙ F n + 1 Q w = seq M + ˙ F n Q seq M + ˙ G n + ˙ F n + 1 Q w
61 oveq1 z = seq M + ˙ G n z + ˙ w = seq M + ˙ G n + ˙ w
62 61 oveq2d z = seq M + ˙ G n seq M + ˙ F n + ˙ F n + 1 Q z + ˙ w = seq M + ˙ F n + ˙ F n + 1 Q seq M + ˙ G n + ˙ w
63 60 62 eqeq12d z = seq M + ˙ G n seq M + ˙ F n Q z + ˙ F n + 1 Q w = seq M + ˙ F n + ˙ F n + 1 Q z + ˙ w seq M + ˙ F n Q seq M + ˙ G n + ˙ F n + 1 Q w = seq M + ˙ F n + ˙ F n + 1 Q seq M + ˙ G n + ˙ w
64 oveq2 w = G n + 1 F n + 1 Q w = F n + 1 Q G n + 1
65 64 oveq2d w = G n + 1 seq M + ˙ F n Q seq M + ˙ G n + ˙ F n + 1 Q w = seq M + ˙ F n Q seq M + ˙ G n + ˙ F n + 1 Q G n + 1
66 oveq2 w = G n + 1 seq M + ˙ G n + ˙ w = seq M + ˙ G n + ˙ G n + 1
67 66 oveq2d w = G n + 1 seq M + ˙ F n + ˙ F n + 1 Q seq M + ˙ G n + ˙ w = seq M + ˙ F n + ˙ F n + 1 Q seq M + ˙ G n + ˙ G n + 1
68 65 67 eqeq12d w = G n + 1 seq M + ˙ F n Q seq M + ˙ G n + ˙ F n + 1 Q w = seq M + ˙ F n + ˙ F n + 1 Q seq M + ˙ G n + ˙ w seq M + ˙ F n Q seq M + ˙ G n + ˙ F n + 1 Q G n + 1 = seq M + ˙ F n + ˙ F n + 1 Q seq M + ˙ G n + ˙ G n + 1
69 63 68 rspc2va seq M + ˙ G n S G n + 1 S z S w S seq M + ˙ F n Q z + ˙ F n + 1 Q w = seq M + ˙ F n + ˙ F n + 1 Q z + ˙ w seq M + ˙ F n Q seq M + ˙ G n + ˙ F n + 1 Q G n + 1 = seq M + ˙ F n + ˙ F n + 1 Q seq M + ˙ G n + ˙ G n + 1
70 23 28 58 69 syl21anc φ n M ..^ N seq M + ˙ F n Q seq M + ˙ G n + ˙ F n + 1 Q G n + 1 = seq M + ˙ F n + ˙ F n + 1 Q seq M + ˙ G n + ˙ G n + 1
71 1 2 4 5 6 7 70 seqcaopr3 φ seq M + ˙ H N = seq M + ˙ F N Q seq M + ˙ G N