Metamath Proof Explorer


Theorem seqcaopr3

Description: Lemma for seqcaopr2 . (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses seqcaopr3.1 φ x S y S x + ˙ y S
seqcaopr3.2 φ x S y S x Q y S
seqcaopr3.3 φ N M
seqcaopr3.4 φ k M N F k S
seqcaopr3.5 φ k M N G k S
seqcaopr3.6 φ k M N H k = F k Q G k
seqcaopr3.7 φ n M ..^ N seq M + ˙ F n Q seq M + ˙ G n + ˙ F n + 1 Q G n + 1 = seq M + ˙ F n + ˙ F n + 1 Q seq M + ˙ G n + ˙ G n + 1
Assertion seqcaopr3 φ seq M + ˙ H N = seq M + ˙ F N Q seq M + ˙ G N

Proof

Step Hyp Ref Expression
1 seqcaopr3.1 φ x S y S x + ˙ y S
2 seqcaopr3.2 φ x S y S x Q y S
3 seqcaopr3.3 φ N M
4 seqcaopr3.4 φ k M N F k S
5 seqcaopr3.5 φ k M N G k S
6 seqcaopr3.6 φ k M N H k = F k Q G k
7 seqcaopr3.7 φ n M ..^ N seq M + ˙ F n Q seq M + ˙ G n + ˙ F n + 1 Q G n + 1 = seq M + ˙ F n + ˙ F n + 1 Q seq M + ˙ G n + ˙ G n + 1
8 eluzfz2 N M N M N
9 3 8 syl φ N M N
10 fveq2 z = M seq M + ˙ H z = seq M + ˙ H M
11 fveq2 z = M seq M + ˙ F z = seq M + ˙ F M
12 fveq2 z = M seq M + ˙ G z = seq M + ˙ G M
13 11 12 oveq12d z = M seq M + ˙ F z Q seq M + ˙ G z = seq M + ˙ F M Q seq M + ˙ G M
14 10 13 eqeq12d z = M seq M + ˙ H z = seq M + ˙ F z Q seq M + ˙ G z seq M + ˙ H M = seq M + ˙ F M Q seq M + ˙ G M
15 14 imbi2d z = M φ seq M + ˙ H z = seq M + ˙ F z Q seq M + ˙ G z φ seq M + ˙ H M = seq M + ˙ F M Q seq M + ˙ G M
16 fveq2 z = n seq M + ˙ H z = seq M + ˙ H n
17 fveq2 z = n seq M + ˙ F z = seq M + ˙ F n
18 fveq2 z = n seq M + ˙ G z = seq M + ˙ G n
19 17 18 oveq12d z = n seq M + ˙ F z Q seq M + ˙ G z = seq M + ˙ F n Q seq M + ˙ G n
20 16 19 eqeq12d z = n seq M + ˙ H z = seq M + ˙ F z Q seq M + ˙ G z seq M + ˙ H n = seq M + ˙ F n Q seq M + ˙ G n
21 20 imbi2d z = n φ seq M + ˙ H z = seq M + ˙ F z Q seq M + ˙ G z φ seq M + ˙ H n = seq M + ˙ F n Q seq M + ˙ G n
22 fveq2 z = n + 1 seq M + ˙ H z = seq M + ˙ H n + 1
23 fveq2 z = n + 1 seq M + ˙ F z = seq M + ˙ F n + 1
24 fveq2 z = n + 1 seq M + ˙ G z = seq M + ˙ G n + 1
25 23 24 oveq12d z = n + 1 seq M + ˙ F z Q seq M + ˙ G z = seq M + ˙ F n + 1 Q seq M + ˙ G n + 1
26 22 25 eqeq12d z = n + 1 seq M + ˙ H z = seq M + ˙ F z Q seq M + ˙ G z seq M + ˙ H n + 1 = seq M + ˙ F n + 1 Q seq M + ˙ G n + 1
27 26 imbi2d z = n + 1 φ seq M + ˙ H z = seq M + ˙ F z Q seq M + ˙ G z φ seq M + ˙ H n + 1 = seq M + ˙ F n + 1 Q seq M + ˙ G n + 1
28 fveq2 z = N seq M + ˙ H z = seq M + ˙ H N
29 fveq2 z = N seq M + ˙ F z = seq M + ˙ F N
30 fveq2 z = N seq M + ˙ G z = seq M + ˙ G N
31 29 30 oveq12d z = N seq M + ˙ F z Q seq M + ˙ G z = seq M + ˙ F N Q seq M + ˙ G N
32 28 31 eqeq12d z = N seq M + ˙ H z = seq M + ˙ F z Q seq M + ˙ G z seq M + ˙ H N = seq M + ˙ F N Q seq M + ˙ G N
33 32 imbi2d z = N φ seq M + ˙ H z = seq M + ˙ F z Q seq M + ˙ G z φ seq M + ˙ H N = seq M + ˙ F N Q seq M + ˙ G N
34 fveq2 k = M H k = H M
35 fveq2 k = M F k = F M
36 fveq2 k = M G k = G M
37 35 36 oveq12d k = M F k Q G k = F M Q G M
38 34 37 eqeq12d k = M H k = F k Q G k H M = F M Q G M
39 6 ralrimiva φ k M N H k = F k Q G k
40 eluzfz1 N M M M N
41 3 40 syl φ M M N
42 38 39 41 rspcdva φ H M = F M Q G M
43 eluzel2 N M M
44 3 43 syl φ M
45 seq1 M seq M + ˙ H M = H M
46 44 45 syl φ seq M + ˙ H M = H M
47 seq1 M seq M + ˙ F M = F M
48 seq1 M seq M + ˙ G M = G M
49 47 48 oveq12d M seq M + ˙ F M Q seq M + ˙ G M = F M Q G M
50 44 49 syl φ seq M + ˙ F M Q seq M + ˙ G M = F M Q G M
51 42 46 50 3eqtr4d φ seq M + ˙ H M = seq M + ˙ F M Q seq M + ˙ G M
52 51 a1i N M φ seq M + ˙ H M = seq M + ˙ F M Q seq M + ˙ G M
53 oveq1 seq M + ˙ H n = seq M + ˙ F n Q seq M + ˙ G n seq M + ˙ H n + ˙ H n + 1 = seq M + ˙ F n Q seq M + ˙ G n + ˙ H n + 1
54 elfzouz n M ..^ N n M
55 54 adantl φ n M ..^ N n M
56 seqp1 n M seq M + ˙ H n + 1 = seq M + ˙ H n + ˙ H n + 1
57 55 56 syl φ n M ..^ N seq M + ˙ H n + 1 = seq M + ˙ H n + ˙ H n + 1
58 fveq2 k = n + 1 H k = H n + 1
59 fveq2 k = n + 1 F k = F n + 1
60 fveq2 k = n + 1 G k = G n + 1
61 59 60 oveq12d k = n + 1 F k Q G k = F n + 1 Q G n + 1
62 58 61 eqeq12d k = n + 1 H k = F k Q G k H n + 1 = F n + 1 Q G n + 1
63 39 adantr φ n M ..^ N k M N H k = F k Q G k
64 fzofzp1 n M ..^ N n + 1 M N
65 64 adantl φ n M ..^ N n + 1 M N
66 62 63 65 rspcdva φ n M ..^ N H n + 1 = F n + 1 Q G n + 1
67 66 oveq2d φ n M ..^ N seq M + ˙ F n Q seq M + ˙ G n + ˙ H n + 1 = seq M + ˙ F n Q seq M + ˙ G n + ˙ F n + 1 Q G n + 1
68 seqp1 n M seq M + ˙ F n + 1 = seq M + ˙ F n + ˙ F n + 1
69 seqp1 n M seq M + ˙ G n + 1 = seq M + ˙ G n + ˙ G n + 1
70 68 69 oveq12d n M seq M + ˙ F n + 1 Q seq M + ˙ G n + 1 = seq M + ˙ F n + ˙ F n + 1 Q seq M + ˙ G n + ˙ G n + 1
71 55 70 syl φ n M ..^ N seq M + ˙ F n + 1 Q seq M + ˙ G n + 1 = seq M + ˙ F n + ˙ F n + 1 Q seq M + ˙ G n + ˙ G n + 1
72 7 67 71 3eqtr4rd φ n M ..^ N seq M + ˙ F n + 1 Q seq M + ˙ G n + 1 = seq M + ˙ F n Q seq M + ˙ G n + ˙ H n + 1
73 57 72 eqeq12d φ n M ..^ N seq M + ˙ H n + 1 = seq M + ˙ F n + 1 Q seq M + ˙ G n + 1 seq M + ˙ H n + ˙ H n + 1 = seq M + ˙ F n Q seq M + ˙ G n + ˙ H n + 1
74 53 73 syl5ibr φ n M ..^ N seq M + ˙ H n = seq M + ˙ F n Q seq M + ˙ G n seq M + ˙ H n + 1 = seq M + ˙ F n + 1 Q seq M + ˙ G n + 1
75 74 expcom n M ..^ N φ seq M + ˙ H n = seq M + ˙ F n Q seq M + ˙ G n seq M + ˙ H n + 1 = seq M + ˙ F n + 1 Q seq M + ˙ G n + 1
76 75 a2d n M ..^ N φ seq M + ˙ H n = seq M + ˙ F n Q seq M + ˙ G n φ seq M + ˙ H n + 1 = seq M + ˙ F n + 1 Q seq M + ˙ G n + 1
77 15 21 27 33 52 76 fzind2 N M N φ seq M + ˙ H N = seq M + ˙ F N Q seq M + ˙ G N
78 9 77 mpcom φ seq M + ˙ H N = seq M + ˙ F N Q seq M + ˙ G N