Step |
Hyp |
Ref |
Expression |
1 |
|
seqcoll2.1 |
|
2 |
|
seqcoll2.1b |
|
3 |
|
seqcoll2.c |
|
4 |
|
seqcoll2.a |
|
5 |
|
seqcoll2.2 |
|
6 |
|
seqcoll2.3 |
|
7 |
|
seqcoll2.5 |
|
8 |
|
seqcoll2.6 |
|
9 |
|
seqcoll2.7 |
|
10 |
|
seqcoll2.8 |
|
11 |
|
fzssuz |
|
12 |
|
isof1o |
|
13 |
5 12
|
syl |
|
14 |
|
f1of |
|
15 |
13 14
|
syl |
|
16 |
|
fzfi |
|
17 |
|
ssfi |
|
18 |
16 7 17
|
sylancr |
|
19 |
|
hasheq0 |
|
20 |
18 19
|
syl |
|
21 |
20
|
necon3bbid |
|
22 |
6 21
|
mpbird |
|
23 |
|
hashcl |
|
24 |
18 23
|
syl |
|
25 |
|
elnn0 |
|
26 |
24 25
|
sylib |
|
27 |
26
|
ord |
|
28 |
22 27
|
mt3d |
|
29 |
|
nnuz |
|
30 |
28 29
|
eleqtrdi |
|
31 |
|
eluzfz2 |
|
32 |
30 31
|
syl |
|
33 |
15 32
|
ffvelrnd |
|
34 |
7 33
|
sseldd |
|
35 |
11 34
|
sselid |
|
36 |
|
elfzuz3 |
|
37 |
34 36
|
syl |
|
38 |
|
fzss2 |
|
39 |
37 38
|
syl |
|
40 |
39
|
sselda |
|
41 |
40 8
|
syldan |
|
42 |
35 41 3
|
seqcl |
|
43 |
|
peano2uz |
|
44 |
35 43
|
syl |
|
45 |
|
fzss1 |
|
46 |
44 45
|
syl |
|
47 |
46
|
sselda |
|
48 |
|
eluzelre |
|
49 |
35 48
|
syl |
|
50 |
49
|
adantr |
|
51 |
|
peano2re |
|
52 |
50 51
|
syl |
|
53 |
|
elfzelz |
|
54 |
53
|
zred |
|
55 |
54
|
adantl |
|
56 |
50
|
ltp1d |
|
57 |
|
elfzle1 |
|
58 |
57
|
adantl |
|
59 |
50 52 55 56 58
|
ltletrd |
|
60 |
13
|
adantr |
|
61 |
|
f1ocnv |
|
62 |
60 61
|
syl |
|
63 |
|
f1of |
|
64 |
62 63
|
syl |
|
65 |
|
simprr |
|
66 |
64 65
|
ffvelrnd |
|
67 |
66
|
elfzelzd |
|
68 |
67
|
zred |
|
69 |
24
|
adantr |
|
70 |
69
|
nn0red |
|
71 |
|
elfzle2 |
|
72 |
66 71
|
syl |
|
73 |
68 70 72
|
lensymd |
|
74 |
5
|
adantr |
|
75 |
32
|
adantr |
|
76 |
|
isorel |
|
77 |
74 75 66 76
|
syl12anc |
|
78 |
|
f1ocnvfv2 |
|
79 |
60 65 78
|
syl2anc |
|
80 |
79
|
breq2d |
|
81 |
77 80
|
bitrd |
|
82 |
73 81
|
mtbid |
|
83 |
82
|
expr |
|
84 |
59 83
|
mt2d |
|
85 |
47 84
|
eldifd |
|
86 |
85 9
|
syldan |
|
87 |
2 35 37 42 86
|
seqid2 |
|
88 |
7 11
|
sstrdi |
|
89 |
39
|
ssdifd |
|
90 |
89
|
sselda |
|
91 |
90 9
|
syldan |
|
92 |
1 2 3 4 5 32 88 41 91 10
|
seqcoll |
|
93 |
87 92
|
eqtr3d |
|