Metamath Proof Explorer


Theorem seqdistr

Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqdistr.1 φ x S y S x + ˙ y S
seqdistr.2 φ x S y S C T x + ˙ y = C T x + ˙ C T y
seqdistr.3 φ N M
seqdistr.4 φ x M N G x S
seqdistr.5 φ x M N F x = C T G x
Assertion seqdistr φ seq M + ˙ F N = C T seq M + ˙ G N

Proof

Step Hyp Ref Expression
1 seqdistr.1 φ x S y S x + ˙ y S
2 seqdistr.2 φ x S y S C T x + ˙ y = C T x + ˙ C T y
3 seqdistr.3 φ N M
4 seqdistr.4 φ x M N G x S
5 seqdistr.5 φ x M N F x = C T G x
6 oveq2 z = x + ˙ y C T z = C T x + ˙ y
7 eqid z S C T z = z S C T z
8 ovex C T x + ˙ y V
9 6 7 8 fvmpt x + ˙ y S z S C T z x + ˙ y = C T x + ˙ y
10 1 9 syl φ x S y S z S C T z x + ˙ y = C T x + ˙ y
11 oveq2 z = x C T z = C T x
12 ovex C T x V
13 11 7 12 fvmpt x S z S C T z x = C T x
14 13 ad2antrl φ x S y S z S C T z x = C T x
15 oveq2 z = y C T z = C T y
16 ovex C T y V
17 15 7 16 fvmpt y S z S C T z y = C T y
18 17 ad2antll φ x S y S z S C T z y = C T y
19 14 18 oveq12d φ x S y S z S C T z x + ˙ z S C T z y = C T x + ˙ C T y
20 2 10 19 3eqtr4d φ x S y S z S C T z x + ˙ y = z S C T z x + ˙ z S C T z y
21 oveq2 z = G x C T z = C T G x
22 ovex C T G x V
23 21 7 22 fvmpt G x S z S C T z G x = C T G x
24 4 23 syl φ x M N z S C T z G x = C T G x
25 24 5 eqtr4d φ x M N z S C T z G x = F x
26 1 4 3 20 25 seqhomo φ z S C T z seq M + ˙ G N = seq M + ˙ F N
27 3 4 1 seqcl φ seq M + ˙ G N S
28 oveq2 z = seq M + ˙ G N C T z = C T seq M + ˙ G N
29 ovex C T seq M + ˙ G N V
30 28 7 29 fvmpt seq M + ˙ G N S z S C T z seq M + ˙ G N = C T seq M + ˙ G N
31 27 30 syl φ z S C T z seq M + ˙ G N = C T seq M + ˙ G N
32 26 31 eqtr3d φ seq M + ˙ F N = C T seq M + ˙ G N