Metamath Proof Explorer


Theorem seqeq1

Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013)

Ref Expression
Assertion seqeq1 M = N seq M + ˙ F = seq N + ˙ F

Proof

Step Hyp Ref Expression
1 fveq2 M = N F M = F N
2 opeq12 M = N F M = F N M F M = N F N
3 1 2 mpdan M = N M F M = N F N
4 rdgeq2 M F M = N F N rec x V , y V x + 1 y + ˙ F x + 1 M F M = rec x V , y V x + 1 y + ˙ F x + 1 N F N
5 3 4 syl M = N rec x V , y V x + 1 y + ˙ F x + 1 M F M = rec x V , y V x + 1 y + ˙ F x + 1 N F N
6 5 imaeq1d M = N rec x V , y V x + 1 y + ˙ F x + 1 M F M ω = rec x V , y V x + 1 y + ˙ F x + 1 N F N ω
7 df-seq seq M + ˙ F = rec x V , y V x + 1 y + ˙ F x + 1 M F M ω
8 df-seq seq N + ˙ F = rec x V , y V x + 1 y + ˙ F x + 1 N F N ω
9 6 7 8 3eqtr4g M = N seq M + ˙ F = seq N + ˙ F