Metamath Proof Explorer


Theorem seqeq2

Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013)

Ref Expression
Assertion seqeq2 + ˙ = Q seq M + ˙ F = seq M Q F

Proof

Step Hyp Ref Expression
1 oveq + ˙ = Q y + ˙ F x + 1 = y Q F x + 1
2 1 opeq2d + ˙ = Q x + 1 y + ˙ F x + 1 = x + 1 y Q F x + 1
3 2 mpoeq3dv + ˙ = Q x V , y V x + 1 y + ˙ F x + 1 = x V , y V x + 1 y Q F x + 1
4 rdgeq1 x V , y V x + 1 y + ˙ F x + 1 = x V , y V x + 1 y Q F x + 1 rec x V , y V x + 1 y + ˙ F x + 1 M F M = rec x V , y V x + 1 y Q F x + 1 M F M
5 3 4 syl + ˙ = Q rec x V , y V x + 1 y + ˙ F x + 1 M F M = rec x V , y V x + 1 y Q F x + 1 M F M
6 5 imaeq1d + ˙ = Q rec x V , y V x + 1 y + ˙ F x + 1 M F M ω = rec x V , y V x + 1 y Q F x + 1 M F M ω
7 df-seq seq M + ˙ F = rec x V , y V x + 1 y + ˙ F x + 1 M F M ω
8 df-seq seq M Q F = rec x V , y V x + 1 y Q F x + 1 M F M ω
9 6 7 8 3eqtr4g + ˙ = Q seq M + ˙ F = seq M Q F