Metamath Proof Explorer


Theorem seqex

Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013)

Ref Expression
Assertion seqex seqM+˙FV

Proof

Step Hyp Ref Expression
1 df-seq seqM+˙F=recxV,yVx+1y+˙Fx+1MFMω
2 rdgfun FunrecxV,yVx+1y+˙Fx+1MFM
3 omex ωV
4 funimaexg FunrecxV,yVx+1y+˙Fx+1MFMωVrecxV,yVx+1y+˙Fx+1MFMωV
5 2 3 4 mp2an recxV,yVx+1y+˙Fx+1MFMωV
6 1 5 eqeltri seqM+˙FV