Metamath Proof Explorer


Theorem seqex

Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013)

Ref Expression
Assertion seqex seq M + ˙ F V

Proof

Step Hyp Ref Expression
1 df-seq seq M + ˙ F = rec x V , y V x + 1 y + ˙ F x + 1 M F M ω
2 rdgfun Fun rec x V , y V x + 1 y + ˙ F x + 1 M F M
3 omex ω V
4 funimaexg Fun rec x V , y V x + 1 y + ˙ F x + 1 M F M ω V rec x V , y V x + 1 y + ˙ F x + 1 M F M ω V
5 2 3 4 mp2an rec x V , y V x + 1 y + ˙ F x + 1 M F M ω V
6 1 5 eqeltri seq M + ˙ F V