Metamath Proof Explorer


Theorem seqf

Description: Range of the recursive sequence builder (special case of seqf2 ). (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypotheses seqf.1 Z = M
seqf.2 φ M
seqf.3 φ x Z F x S
seqf.4 φ x S y S x + ˙ y S
Assertion seqf φ seq M + ˙ F : Z S

Proof

Step Hyp Ref Expression
1 seqf.1 Z = M
2 seqf.2 φ M
3 seqf.3 φ x Z F x S
4 seqf.4 φ x S y S x + ˙ y S
5 fveq2 x = M F x = F M
6 5 eleq1d x = M F x S F M S
7 3 ralrimiva φ x Z F x S
8 uzid M M M
9 2 8 syl φ M M
10 9 1 eleqtrrdi φ M Z
11 6 7 10 rspcdva φ F M S
12 peano2uzr M x M + 1 x M
13 2 12 sylan φ x M + 1 x M
14 13 1 eleqtrrdi φ x M + 1 x Z
15 14 3 syldan φ x M + 1 F x S
16 11 4 1 2 15 seqf2 φ seq M + ˙ F : Z S