Metamath Proof Explorer


Theorem seqf1o

Description: Rearrange a sum via an arbitrary bijection on ( M ... N ) . (Contributed by Mario Carneiro, 27-Feb-2014) (Revised by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses seqf1o.1 φ x S y S x + ˙ y S
seqf1o.2 φ x C y C x + ˙ y = y + ˙ x
seqf1o.3 φ x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
seqf1o.4 φ N M
seqf1o.5 φ C S
seqf1o.6 φ F : M N 1-1 onto M N
seqf1o.7 φ x M N G x C
seqf1o.8 φ k M N H k = G F k
Assertion seqf1o φ seq M + ˙ H N = seq M + ˙ G N

Proof

Step Hyp Ref Expression
1 seqf1o.1 φ x S y S x + ˙ y S
2 seqf1o.2 φ x C y C x + ˙ y = y + ˙ x
3 seqf1o.3 φ x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
4 seqf1o.4 φ N M
5 seqf1o.5 φ C S
6 seqf1o.6 φ F : M N 1-1 onto M N
7 seqf1o.7 φ x M N G x C
8 seqf1o.8 φ k M N H k = G F k
9 7 fmpttd φ x M N G x : M N C
10 oveq2 x = M M x = M M
11 f1oeq23 M x = M M M x = M M f : M x 1-1 onto M x f : M M 1-1 onto M M
12 10 10 11 syl2anc x = M f : M x 1-1 onto M x f : M M 1-1 onto M M
13 10 feq2d x = M g : M x C g : M M C
14 12 13 anbi12d x = M f : M x 1-1 onto M x g : M x C f : M M 1-1 onto M M g : M M C
15 fveq2 x = M seq M + ˙ g f x = seq M + ˙ g f M
16 fveq2 x = M seq M + ˙ g x = seq M + ˙ g M
17 15 16 eqeq12d x = M seq M + ˙ g f x = seq M + ˙ g x seq M + ˙ g f M = seq M + ˙ g M
18 14 17 imbi12d x = M f : M x 1-1 onto M x g : M x C seq M + ˙ g f x = seq M + ˙ g x f : M M 1-1 onto M M g : M M C seq M + ˙ g f M = seq M + ˙ g M
19 18 2albidv x = M g f f : M x 1-1 onto M x g : M x C seq M + ˙ g f x = seq M + ˙ g x g f f : M M 1-1 onto M M g : M M C seq M + ˙ g f M = seq M + ˙ g M
20 19 imbi2d x = M φ g f f : M x 1-1 onto M x g : M x C seq M + ˙ g f x = seq M + ˙ g x φ g f f : M M 1-1 onto M M g : M M C seq M + ˙ g f M = seq M + ˙ g M
21 oveq2 x = k M x = M k
22 f1oeq23 M x = M k M x = M k f : M x 1-1 onto M x f : M k 1-1 onto M k
23 21 21 22 syl2anc x = k f : M x 1-1 onto M x f : M k 1-1 onto M k
24 21 feq2d x = k g : M x C g : M k C
25 23 24 anbi12d x = k f : M x 1-1 onto M x g : M x C f : M k 1-1 onto M k g : M k C
26 fveq2 x = k seq M + ˙ g f x = seq M + ˙ g f k
27 fveq2 x = k seq M + ˙ g x = seq M + ˙ g k
28 26 27 eqeq12d x = k seq M + ˙ g f x = seq M + ˙ g x seq M + ˙ g f k = seq M + ˙ g k
29 25 28 imbi12d x = k f : M x 1-1 onto M x g : M x C seq M + ˙ g f x = seq M + ˙ g x f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k
30 29 2albidv x = k g f f : M x 1-1 onto M x g : M x C seq M + ˙ g f x = seq M + ˙ g x g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k
31 30 imbi2d x = k φ g f f : M x 1-1 onto M x g : M x C seq M + ˙ g f x = seq M + ˙ g x φ g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k
32 oveq2 x = k + 1 M x = M k + 1
33 f1oeq23 M x = M k + 1 M x = M k + 1 f : M x 1-1 onto M x f : M k + 1 1-1 onto M k + 1
34 32 32 33 syl2anc x = k + 1 f : M x 1-1 onto M x f : M k + 1 1-1 onto M k + 1
35 32 feq2d x = k + 1 g : M x C g : M k + 1 C
36 34 35 anbi12d x = k + 1 f : M x 1-1 onto M x g : M x C f : M k + 1 1-1 onto M k + 1 g : M k + 1 C
37 fveq2 x = k + 1 seq M + ˙ g f x = seq M + ˙ g f k + 1
38 fveq2 x = k + 1 seq M + ˙ g x = seq M + ˙ g k + 1
39 37 38 eqeq12d x = k + 1 seq M + ˙ g f x = seq M + ˙ g x seq M + ˙ g f k + 1 = seq M + ˙ g k + 1
40 36 39 imbi12d x = k + 1 f : M x 1-1 onto M x g : M x C seq M + ˙ g f x = seq M + ˙ g x f : M k + 1 1-1 onto M k + 1 g : M k + 1 C seq M + ˙ g f k + 1 = seq M + ˙ g k + 1
41 40 2albidv x = k + 1 g f f : M x 1-1 onto M x g : M x C seq M + ˙ g f x = seq M + ˙ g x g f f : M k + 1 1-1 onto M k + 1 g : M k + 1 C seq M + ˙ g f k + 1 = seq M + ˙ g k + 1
42 41 imbi2d x = k + 1 φ g f f : M x 1-1 onto M x g : M x C seq M + ˙ g f x = seq M + ˙ g x φ g f f : M k + 1 1-1 onto M k + 1 g : M k + 1 C seq M + ˙ g f k + 1 = seq M + ˙ g k + 1
43 oveq2 x = N M x = M N
44 f1oeq23 M x = M N M x = M N f : M x 1-1 onto M x f : M N 1-1 onto M N
45 43 43 44 syl2anc x = N f : M x 1-1 onto M x f : M N 1-1 onto M N
46 43 feq2d x = N g : M x C g : M N C
47 45 46 anbi12d x = N f : M x 1-1 onto M x g : M x C f : M N 1-1 onto M N g : M N C
48 fveq2 x = N seq M + ˙ g f x = seq M + ˙ g f N
49 fveq2 x = N seq M + ˙ g x = seq M + ˙ g N
50 48 49 eqeq12d x = N seq M + ˙ g f x = seq M + ˙ g x seq M + ˙ g f N = seq M + ˙ g N
51 47 50 imbi12d x = N f : M x 1-1 onto M x g : M x C seq M + ˙ g f x = seq M + ˙ g x f : M N 1-1 onto M N g : M N C seq M + ˙ g f N = seq M + ˙ g N
52 51 2albidv x = N g f f : M x 1-1 onto M x g : M x C seq M + ˙ g f x = seq M + ˙ g x g f f : M N 1-1 onto M N g : M N C seq M + ˙ g f N = seq M + ˙ g N
53 52 imbi2d x = N φ g f f : M x 1-1 onto M x g : M x C seq M + ˙ g f x = seq M + ˙ g x φ g f f : M N 1-1 onto M N g : M N C seq M + ˙ g f N = seq M + ˙ g N
54 f1of f : M M 1-1 onto M M f : M M M M
55 54 adantr f : M M 1-1 onto M M g : M M C f : M M M M
56 elfz3 M M M M
57 fvco3 f : M M M M M M M g f M = g f M
58 55 56 57 syl2anr M f : M M 1-1 onto M M g : M M C g f M = g f M
59 ffvelrn f : M M M M M M M f M M M
60 54 56 59 syl2anr M f : M M 1-1 onto M M f M M M
61 fzsn M M M = M
62 61 eleq2d M f M M M f M M
63 elsni f M M f M = M
64 62 63 syl6bi M f M M M f M = M
65 64 imp M f M M M f M = M
66 60 65 syldan M f : M M 1-1 onto M M f M = M
67 66 adantrr M f : M M 1-1 onto M M g : M M C f M = M
68 67 fveq2d M f : M M 1-1 onto M M g : M M C g f M = g M
69 58 68 eqtrd M f : M M 1-1 onto M M g : M M C g f M = g M
70 seq1 M seq M + ˙ g f M = g f M
71 70 adantr M f : M M 1-1 onto M M g : M M C seq M + ˙ g f M = g f M
72 seq1 M seq M + ˙ g M = g M
73 72 adantr M f : M M 1-1 onto M M g : M M C seq M + ˙ g M = g M
74 69 71 73 3eqtr4d M f : M M 1-1 onto M M g : M M C seq M + ˙ g f M = seq M + ˙ g M
75 74 ex M f : M M 1-1 onto M M g : M M C seq M + ˙ g f M = seq M + ˙ g M
76 75 alrimivv M g f f : M M 1-1 onto M M g : M M C seq M + ˙ g f M = seq M + ˙ g M
77 76 a1d M φ g f f : M M 1-1 onto M M g : M M C seq M + ˙ g f M = seq M + ˙ g M
78 f1oeq1 f = t f : M k 1-1 onto M k t : M k 1-1 onto M k
79 feq1 g = s g : M k C s : M k C
80 78 79 bi2anan9r g = s f = t f : M k 1-1 onto M k g : M k C t : M k 1-1 onto M k s : M k C
81 coeq1 g = s g f = s f
82 coeq2 f = t s f = s t
83 81 82 sylan9eq g = s f = t g f = s t
84 83 seqeq3d g = s f = t seq M + ˙ g f = seq M + ˙ s t
85 84 fveq1d g = s f = t seq M + ˙ g f k = seq M + ˙ s t k
86 simpl g = s f = t g = s
87 86 seqeq3d g = s f = t seq M + ˙ g = seq M + ˙ s
88 87 fveq1d g = s f = t seq M + ˙ g k = seq M + ˙ s k
89 85 88 eqeq12d g = s f = t seq M + ˙ g f k = seq M + ˙ g k seq M + ˙ s t k = seq M + ˙ s k
90 80 89 imbi12d g = s f = t f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k t : M k 1-1 onto M k s : M k C seq M + ˙ s t k = seq M + ˙ s k
91 90 cbval2vw g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k s t t : M k 1-1 onto M k s : M k C seq M + ˙ s t k = seq M + ˙ s k
92 simplll φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C φ
93 92 1 sylan φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C x S y S x + ˙ y S
94 92 2 sylan φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C x C y C x + ˙ y = y + ˙ x
95 92 3 sylan φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
96 simpllr φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C k M
97 92 5 syl φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C C S
98 simprl φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C f : M k + 1 1-1 onto M k + 1
99 simprr φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C g : M k + 1 C
100 eqid w M k f if w < f -1 k + 1 w w + 1 = w M k f if w < f -1 k + 1 w w + 1
101 eqid f -1 k + 1 = f -1 k + 1
102 simplr φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k
103 102 91 sylib φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C s t t : M k 1-1 onto M k s : M k C seq M + ˙ s t k = seq M + ˙ s k
104 93 94 95 96 97 98 99 100 101 103 seqf1olem2 φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C seq M + ˙ g f k + 1 = seq M + ˙ g k + 1
105 104 exp31 φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C seq M + ˙ g f k + 1 = seq M + ˙ g k + 1
106 91 105 syl5bir φ k M s t t : M k 1-1 onto M k s : M k C seq M + ˙ s t k = seq M + ˙ s k f : M k + 1 1-1 onto M k + 1 g : M k + 1 C seq M + ˙ g f k + 1 = seq M + ˙ g k + 1
107 106 alrimdv φ k M s t t : M k 1-1 onto M k s : M k C seq M + ˙ s t k = seq M + ˙ s k f f : M k + 1 1-1 onto M k + 1 g : M k + 1 C seq M + ˙ g f k + 1 = seq M + ˙ g k + 1
108 107 alrimdv φ k M s t t : M k 1-1 onto M k s : M k C seq M + ˙ s t k = seq M + ˙ s k g f f : M k + 1 1-1 onto M k + 1 g : M k + 1 C seq M + ˙ g f k + 1 = seq M + ˙ g k + 1
109 91 108 syl5bi φ k M g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k g f f : M k + 1 1-1 onto M k + 1 g : M k + 1 C seq M + ˙ g f k + 1 = seq M + ˙ g k + 1
110 109 expcom k M φ g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k g f f : M k + 1 1-1 onto M k + 1 g : M k + 1 C seq M + ˙ g f k + 1 = seq M + ˙ g k + 1
111 110 a2d k M φ g f f : M k 1-1 onto M k g : M k C seq M + ˙ g f k = seq M + ˙ g k φ g f f : M k + 1 1-1 onto M k + 1 g : M k + 1 C seq M + ˙ g f k + 1 = seq M + ˙ g k + 1
112 20 31 42 53 77 111 uzind4 N M φ g f f : M N 1-1 onto M N g : M N C seq M + ˙ g f N = seq M + ˙ g N
113 4 112 mpcom φ g f f : M N 1-1 onto M N g : M N C seq M + ˙ g f N = seq M + ˙ g N
114 fvex G x V
115 eqid x M N G x = x M N G x
116 114 115 fnmpti x M N G x Fn M N
117 fzfi M N Fin
118 fnfi x M N G x Fn M N M N Fin x M N G x Fin
119 116 117 118 mp2an x M N G x Fin
120 f1of F : M N 1-1 onto M N F : M N M N
121 6 120 syl φ F : M N M N
122 ovexd φ M N V
123 fex2 F : M N M N M N V M N V F V
124 121 122 122 123 syl3anc φ F V
125 f1oeq1 f = F f : M N 1-1 onto M N F : M N 1-1 onto M N
126 feq1 g = x M N G x g : M N C x M N G x : M N C
127 125 126 bi2anan9r g = x M N G x f = F f : M N 1-1 onto M N g : M N C F : M N 1-1 onto M N x M N G x : M N C
128 coeq1 g = x M N G x g f = x M N G x f
129 coeq2 f = F x M N G x f = x M N G x F
130 128 129 sylan9eq g = x M N G x f = F g f = x M N G x F
131 130 seqeq3d g = x M N G x f = F seq M + ˙ g f = seq M + ˙ x M N G x F
132 131 fveq1d g = x M N G x f = F seq M + ˙ g f N = seq M + ˙ x M N G x F N
133 simpl g = x M N G x f = F g = x M N G x
134 133 seqeq3d g = x M N G x f = F seq M + ˙ g = seq M + ˙ x M N G x
135 134 fveq1d g = x M N G x f = F seq M + ˙ g N = seq M + ˙ x M N G x N
136 132 135 eqeq12d g = x M N G x f = F seq M + ˙ g f N = seq M + ˙ g N seq M + ˙ x M N G x F N = seq M + ˙ x M N G x N
137 127 136 imbi12d g = x M N G x f = F f : M N 1-1 onto M N g : M N C seq M + ˙ g f N = seq M + ˙ g N F : M N 1-1 onto M N x M N G x : M N C seq M + ˙ x M N G x F N = seq M + ˙ x M N G x N
138 137 spc2gv x M N G x Fin F V g f f : M N 1-1 onto M N g : M N C seq M + ˙ g f N = seq M + ˙ g N F : M N 1-1 onto M N x M N G x : M N C seq M + ˙ x M N G x F N = seq M + ˙ x M N G x N
139 119 124 138 sylancr φ g f f : M N 1-1 onto M N g : M N C seq M + ˙ g f N = seq M + ˙ g N F : M N 1-1 onto M N x M N G x : M N C seq M + ˙ x M N G x F N = seq M + ˙ x M N G x N
140 113 139 mpd φ F : M N 1-1 onto M N x M N G x : M N C seq M + ˙ x M N G x F N = seq M + ˙ x M N G x N
141 6 9 140 mp2and φ seq M + ˙ x M N G x F N = seq M + ˙ x M N G x N
142 121 ffvelrnda φ k M N F k M N
143 fveq2 x = F k G x = G F k
144 fvex G F k V
145 143 115 144 fvmpt F k M N x M N G x F k = G F k
146 142 145 syl φ k M N x M N G x F k = G F k
147 fvco3 F : M N M N k M N x M N G x F k = x M N G x F k
148 121 147 sylan φ k M N x M N G x F k = x M N G x F k
149 146 148 8 3eqtr4d φ k M N x M N G x F k = H k
150 4 149 seqfveq φ seq M + ˙ x M N G x F N = seq M + ˙ H N
151 fveq2 x = k G x = G k
152 fvex G k V
153 151 115 152 fvmpt k M N x M N G x k = G k
154 153 adantl φ k M N x M N G x k = G k
155 4 154 seqfveq φ seq M + ˙ x M N G x N = seq M + ˙ G N
156 141 150 155 3eqtr3d φ seq M + ˙ H N = seq M + ˙ G N