Metamath Proof Explorer


Theorem seqf1olem1

Description: Lemma for seqf1o . (Contributed by Mario Carneiro, 26-Feb-2014) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqf1o.1 φ x S y S x + ˙ y S
seqf1o.2 φ x C y C x + ˙ y = y + ˙ x
seqf1o.3 φ x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
seqf1o.4 φ N M
seqf1o.5 φ C S
seqf1olem.5 φ F : M N + 1 1-1 onto M N + 1
seqf1olem.6 φ G : M N + 1 C
seqf1olem.7 J = k M N F if k < K k k + 1
seqf1olem.8 K = F -1 N + 1
Assertion seqf1olem1 φ J : M N 1-1 onto M N

Proof

Step Hyp Ref Expression
1 seqf1o.1 φ x S y S x + ˙ y S
2 seqf1o.2 φ x C y C x + ˙ y = y + ˙ x
3 seqf1o.3 φ x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
4 seqf1o.4 φ N M
5 seqf1o.5 φ C S
6 seqf1olem.5 φ F : M N + 1 1-1 onto M N + 1
7 seqf1olem.6 φ G : M N + 1 C
8 seqf1olem.7 J = k M N F if k < K k k + 1
9 seqf1olem.8 K = F -1 N + 1
10 fvexd φ k M N F if k < K k k + 1 V
11 fvex F -1 x V
12 ovex F -1 x 1 V
13 11 12 ifex if F -1 x < K F -1 x F -1 x 1 V
14 13 a1i φ x M N if F -1 x < K F -1 x F -1 x 1 V
15 iftrue k < K if k < K k k + 1 = k
16 15 fveq2d k < K F if k < K k k + 1 = F k
17 16 eqeq2d k < K x = F if k < K k k + 1 x = F k
18 17 adantl φ k M N k < K x = F if k < K k k + 1 x = F k
19 simprr φ k M N k < K x = F k x = F k
20 elfzelz k M N k
21 20 zred k M N k
22 21 ad2antlr φ k M N k < K x = F k k
23 simprl φ k M N k < K x = F k k < K
24 22 23 gtned φ k M N k < K x = F k K k
25 f1of F : M N + 1 1-1 onto M N + 1 F : M N + 1 M N + 1
26 6 25 syl φ F : M N + 1 M N + 1
27 26 ad2antrr φ k M N k < K x = F k F : M N + 1 M N + 1
28 fzssp1 M N M N + 1
29 simplr φ k M N k < K x = F k k M N
30 28 29 sselid φ k M N k < K x = F k k M N + 1
31 27 30 ffvelrnd φ k M N k < K x = F k F k M N + 1
32 elfzp1 N M F k M N + 1 F k M N F k = N + 1
33 4 32 syl φ F k M N + 1 F k M N F k = N + 1
34 33 ad2antrr φ k M N k < K x = F k F k M N + 1 F k M N F k = N + 1
35 31 34 mpbid φ k M N k < K x = F k F k M N F k = N + 1
36 35 ord φ k M N k < K x = F k ¬ F k M N F k = N + 1
37 6 ad2antrr φ k M N k < K x = F k F : M N + 1 1-1 onto M N + 1
38 f1ocnvfv F : M N + 1 1-1 onto M N + 1 k M N + 1 F k = N + 1 F -1 N + 1 = k
39 37 30 38 syl2anc φ k M N k < K x = F k F k = N + 1 F -1 N + 1 = k
40 9 eqeq1i K = k F -1 N + 1 = k
41 39 40 syl6ibr φ k M N k < K x = F k F k = N + 1 K = k
42 36 41 syld φ k M N k < K x = F k ¬ F k M N K = k
43 42 necon1ad φ k M N k < K x = F k K k F k M N
44 24 43 mpd φ k M N k < K x = F k F k M N
45 19 44 eqeltrd φ k M N k < K x = F k x M N
46 19 eqcomd φ k M N k < K x = F k F k = x
47 f1ocnvfv F : M N + 1 1-1 onto M N + 1 k M N + 1 F k = x F -1 x = k
48 37 30 47 syl2anc φ k M N k < K x = F k F k = x F -1 x = k
49 46 48 mpd φ k M N k < K x = F k F -1 x = k
50 49 23 eqbrtrd φ k M N k < K x = F k F -1 x < K
51 iftrue F -1 x < K if F -1 x < K F -1 x F -1 x 1 = F -1 x
52 50 51 syl φ k M N k < K x = F k if F -1 x < K F -1 x F -1 x 1 = F -1 x
53 52 49 eqtr2d φ k M N k < K x = F k k = if F -1 x < K F -1 x F -1 x 1
54 45 53 jca φ k M N k < K x = F k x M N k = if F -1 x < K F -1 x F -1 x 1
55 54 expr φ k M N k < K x = F k x M N k = if F -1 x < K F -1 x F -1 x 1
56 18 55 sylbid φ k M N k < K x = F if k < K k k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
57 iffalse ¬ k < K if k < K k k + 1 = k + 1
58 57 fveq2d ¬ k < K F if k < K k k + 1 = F k + 1
59 58 eqeq2d ¬ k < K x = F if k < K k k + 1 x = F k + 1
60 59 adantl φ k M N ¬ k < K x = F if k < K k k + 1 x = F k + 1
61 simprr φ k M N ¬ k < K x = F k + 1 x = F k + 1
62 f1ocnv F : M N + 1 1-1 onto M N + 1 F -1 : M N + 1 1-1 onto M N + 1
63 6 62 syl φ F -1 : M N + 1 1-1 onto M N + 1
64 f1of1 F -1 : M N + 1 1-1 onto M N + 1 F -1 : M N + 1 1-1 M N + 1
65 63 64 syl φ F -1 : M N + 1 1-1 M N + 1
66 f1f F -1 : M N + 1 1-1 M N + 1 F -1 : M N + 1 M N + 1
67 65 66 syl φ F -1 : M N + 1 M N + 1
68 peano2uz N M N + 1 M
69 4 68 syl φ N + 1 M
70 eluzfz2 N + 1 M N + 1 M N + 1
71 69 70 syl φ N + 1 M N + 1
72 67 71 ffvelrnd φ F -1 N + 1 M N + 1
73 9 72 eqeltrid φ K M N + 1
74 73 elfzelzd φ K
75 74 zred φ K
76 75 ad2antrr φ k M N ¬ k < K x = F k + 1 K
77 21 ad2antlr φ k M N ¬ k < K x = F k + 1 k
78 peano2re k k + 1
79 77 78 syl φ k M N ¬ k < K x = F k + 1 k + 1
80 simprl φ k M N ¬ k < K x = F k + 1 ¬ k < K
81 76 77 80 nltled φ k M N ¬ k < K x = F k + 1 K k
82 77 ltp1d φ k M N ¬ k < K x = F k + 1 k < k + 1
83 76 77 79 81 82 lelttrd φ k M N ¬ k < K x = F k + 1 K < k + 1
84 76 83 ltned φ k M N ¬ k < K x = F k + 1 K k + 1
85 26 ad2antrr φ k M N ¬ k < K x = F k + 1 F : M N + 1 M N + 1
86 fzp1elp1 k M N k + 1 M N + 1
87 86 ad2antlr φ k M N ¬ k < K x = F k + 1 k + 1 M N + 1
88 85 87 ffvelrnd φ k M N ¬ k < K x = F k + 1 F k + 1 M N + 1
89 elfzp1 N M F k + 1 M N + 1 F k + 1 M N F k + 1 = N + 1
90 4 89 syl φ F k + 1 M N + 1 F k + 1 M N F k + 1 = N + 1
91 90 ad2antrr φ k M N ¬ k < K x = F k + 1 F k + 1 M N + 1 F k + 1 M N F k + 1 = N + 1
92 88 91 mpbid φ k M N ¬ k < K x = F k + 1 F k + 1 M N F k + 1 = N + 1
93 92 ord φ k M N ¬ k < K x = F k + 1 ¬ F k + 1 M N F k + 1 = N + 1
94 6 ad2antrr φ k M N ¬ k < K x = F k + 1 F : M N + 1 1-1 onto M N + 1
95 f1ocnvfv F : M N + 1 1-1 onto M N + 1 k + 1 M N + 1 F k + 1 = N + 1 F -1 N + 1 = k + 1
96 94 87 95 syl2anc φ k M N ¬ k < K x = F k + 1 F k + 1 = N + 1 F -1 N + 1 = k + 1
97 9 eqeq1i K = k + 1 F -1 N + 1 = k + 1
98 96 97 syl6ibr φ k M N ¬ k < K x = F k + 1 F k + 1 = N + 1 K = k + 1
99 93 98 syld φ k M N ¬ k < K x = F k + 1 ¬ F k + 1 M N K = k + 1
100 99 necon1ad φ k M N ¬ k < K x = F k + 1 K k + 1 F k + 1 M N
101 84 100 mpd φ k M N ¬ k < K x = F k + 1 F k + 1 M N
102 61 101 eqeltrd φ k M N ¬ k < K x = F k + 1 x M N
103 61 eqcomd φ k M N ¬ k < K x = F k + 1 F k + 1 = x
104 f1ocnvfv F : M N + 1 1-1 onto M N + 1 k + 1 M N + 1 F k + 1 = x F -1 x = k + 1
105 94 87 104 syl2anc φ k M N ¬ k < K x = F k + 1 F k + 1 = x F -1 x = k + 1
106 103 105 mpd φ k M N ¬ k < K x = F k + 1 F -1 x = k + 1
107 106 breq1d φ k M N ¬ k < K x = F k + 1 F -1 x < K k + 1 < K
108 lttr k k + 1 K k < k + 1 k + 1 < K k < K
109 77 79 76 108 syl3anc φ k M N ¬ k < K x = F k + 1 k < k + 1 k + 1 < K k < K
110 82 109 mpand φ k M N ¬ k < K x = F k + 1 k + 1 < K k < K
111 107 110 sylbid φ k M N ¬ k < K x = F k + 1 F -1 x < K k < K
112 80 111 mtod φ k M N ¬ k < K x = F k + 1 ¬ F -1 x < K
113 iffalse ¬ F -1 x < K if F -1 x < K F -1 x F -1 x 1 = F -1 x 1
114 112 113 syl φ k M N ¬ k < K x = F k + 1 if F -1 x < K F -1 x F -1 x 1 = F -1 x 1
115 106 oveq1d φ k M N ¬ k < K x = F k + 1 F -1 x 1 = k + 1 - 1
116 77 recnd φ k M N ¬ k < K x = F k + 1 k
117 ax-1cn 1
118 pncan k 1 k + 1 - 1 = k
119 116 117 118 sylancl φ k M N ¬ k < K x = F k + 1 k + 1 - 1 = k
120 114 115 119 3eqtrrd φ k M N ¬ k < K x = F k + 1 k = if F -1 x < K F -1 x F -1 x 1
121 102 120 jca φ k M N ¬ k < K x = F k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
122 121 expr φ k M N ¬ k < K x = F k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
123 60 122 sylbid φ k M N ¬ k < K x = F if k < K k k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
124 56 123 pm2.61dan φ k M N x = F if k < K k k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
125 124 expimpd φ k M N x = F if k < K k k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
126 51 eqeq2d F -1 x < K k = if F -1 x < K F -1 x F -1 x 1 k = F -1 x
127 126 adantl φ x M N F -1 x < K k = if F -1 x < K F -1 x F -1 x 1 k = F -1 x
128 eluzel2 N M M
129 4 128 syl φ M
130 129 ad2antrr φ x M N F -1 x < K k = F -1 x M
131 eluzelz N M N
132 4 131 syl φ N
133 132 ad2antrr φ x M N F -1 x < K k = F -1 x N
134 simprr φ x M N F -1 x < K k = F -1 x k = F -1 x
135 67 ad2antrr φ x M N F -1 x < K k = F -1 x F -1 : M N + 1 M N + 1
136 simplr φ x M N F -1 x < K k = F -1 x x M N
137 28 136 sselid φ x M N F -1 x < K k = F -1 x x M N + 1
138 135 137 ffvelrnd φ x M N F -1 x < K k = F -1 x F -1 x M N + 1
139 134 138 eqeltrd φ x M N F -1 x < K k = F -1 x k M N + 1
140 139 elfzelzd φ x M N F -1 x < K k = F -1 x k
141 elfzle1 k M N + 1 M k
142 139 141 syl φ x M N F -1 x < K k = F -1 x M k
143 140 zred φ x M N F -1 x < K k = F -1 x k
144 75 ad2antrr φ x M N F -1 x < K k = F -1 x K
145 132 peano2zd φ N + 1
146 145 zred φ N + 1
147 146 ad2antrr φ x M N F -1 x < K k = F -1 x N + 1
148 simprl φ x M N F -1 x < K k = F -1 x F -1 x < K
149 134 148 eqbrtrd φ x M N F -1 x < K k = F -1 x k < K
150 elfzle2 K M N + 1 K N + 1
151 73 150 syl φ K N + 1
152 151 ad2antrr φ x M N F -1 x < K k = F -1 x K N + 1
153 143 144 147 149 152 ltletrd φ x M N F -1 x < K k = F -1 x k < N + 1
154 zleltp1 k N k N k < N + 1
155 140 133 154 syl2anc φ x M N F -1 x < K k = F -1 x k N k < N + 1
156 153 155 mpbird φ x M N F -1 x < K k = F -1 x k N
157 130 133 140 142 156 elfzd φ x M N F -1 x < K k = F -1 x k M N
158 149 16 syl φ x M N F -1 x < K k = F -1 x F if k < K k k + 1 = F k
159 134 fveq2d φ x M N F -1 x < K k = F -1 x F k = F F -1 x
160 6 ad2antrr φ x M N F -1 x < K k = F -1 x F : M N + 1 1-1 onto M N + 1
161 f1ocnvfv2 F : M N + 1 1-1 onto M N + 1 x M N + 1 F F -1 x = x
162 160 137 161 syl2anc φ x M N F -1 x < K k = F -1 x F F -1 x = x
163 158 159 162 3eqtrrd φ x M N F -1 x < K k = F -1 x x = F if k < K k k + 1
164 157 163 jca φ x M N F -1 x < K k = F -1 x k M N x = F if k < K k k + 1
165 164 expr φ x M N F -1 x < K k = F -1 x k M N x = F if k < K k k + 1
166 127 165 sylbid φ x M N F -1 x < K k = if F -1 x < K F -1 x F -1 x 1 k M N x = F if k < K k k + 1
167 113 eqeq2d ¬ F -1 x < K k = if F -1 x < K F -1 x F -1 x 1 k = F -1 x 1
168 167 adantl φ x M N ¬ F -1 x < K k = if F -1 x < K F -1 x F -1 x 1 k = F -1 x 1
169 129 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 M
170 132 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 N
171 simprr φ x M N ¬ F -1 x < K k = F -1 x 1 k = F -1 x 1
172 67 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 : M N + 1 M N + 1
173 simplr φ x M N ¬ F -1 x < K k = F -1 x 1 x M N
174 28 173 sselid φ x M N ¬ F -1 x < K k = F -1 x 1 x M N + 1
175 172 174 ffvelrnd φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x M N + 1
176 175 elfzelzd φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x
177 peano2zm F -1 x F -1 x 1
178 176 177 syl φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x 1
179 171 178 eqeltrd φ x M N ¬ F -1 x < K k = F -1 x 1 k
180 129 zred φ M
181 180 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 M
182 75 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 K
183 179 zred φ x M N ¬ F -1 x < K k = F -1 x 1 k
184 elfzle1 K M N + 1 M K
185 73 184 syl φ M K
186 185 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 M K
187 176 zred φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x
188 simprl φ x M N ¬ F -1 x < K k = F -1 x 1 ¬ F -1 x < K
189 182 187 188 nltled φ x M N ¬ F -1 x < K k = F -1 x 1 K F -1 x
190 elfzelz x M N x
191 190 adantl φ x M N x
192 191 zred φ x M N x
193 132 zred φ N
194 193 adantr φ x M N N
195 146 adantr φ x M N N + 1
196 elfzle2 x M N x N
197 196 adantl φ x M N x N
198 194 ltp1d φ x M N N < N + 1
199 192 194 195 197 198 lelttrd φ x M N x < N + 1
200 192 199 gtned φ x M N N + 1 x
201 200 adantr φ x M N ¬ F -1 x < K k = F -1 x 1 N + 1 x
202 65 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 : M N + 1 1-1 M N + 1
203 71 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 N + 1 M N + 1
204 f1fveq F -1 : M N + 1 1-1 M N + 1 N + 1 M N + 1 x M N + 1 F -1 N + 1 = F -1 x N + 1 = x
205 202 203 174 204 syl12anc φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 N + 1 = F -1 x N + 1 = x
206 205 necon3bid φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 N + 1 F -1 x N + 1 x
207 201 206 mpbird φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 N + 1 F -1 x
208 9 neeq1i K F -1 x F -1 N + 1 F -1 x
209 207 208 sylibr φ x M N ¬ F -1 x < K k = F -1 x 1 K F -1 x
210 209 necomd φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x K
211 182 187 189 210 leneltd φ x M N ¬ F -1 x < K k = F -1 x 1 K < F -1 x
212 74 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 K
213 zltlem1 K F -1 x K < F -1 x K F -1 x 1
214 212 176 213 syl2anc φ x M N ¬ F -1 x < K k = F -1 x 1 K < F -1 x K F -1 x 1
215 211 214 mpbid φ x M N ¬ F -1 x < K k = F -1 x 1 K F -1 x 1
216 215 171 breqtrrd φ x M N ¬ F -1 x < K k = F -1 x 1 K k
217 181 182 183 186 216 letrd φ x M N ¬ F -1 x < K k = F -1 x 1 M k
218 elfzle2 F -1 x M N + 1 F -1 x N + 1
219 175 218 syl φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x N + 1
220 193 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 N
221 1re 1
222 lesubadd F -1 x 1 N F -1 x 1 N F -1 x N + 1
223 221 222 mp3an2 F -1 x N F -1 x 1 N F -1 x N + 1
224 187 220 223 syl2anc φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x 1 N F -1 x N + 1
225 219 224 mpbird φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x 1 N
226 171 225 eqbrtrd φ x M N ¬ F -1 x < K k = F -1 x 1 k N
227 169 170 179 217 226 elfzd φ x M N ¬ F -1 x < K k = F -1 x 1 k M N
228 182 183 216 lensymd φ x M N ¬ F -1 x < K k = F -1 x 1 ¬ k < K
229 228 58 syl φ x M N ¬ F -1 x < K k = F -1 x 1 F if k < K k k + 1 = F k + 1
230 171 oveq1d φ x M N ¬ F -1 x < K k = F -1 x 1 k + 1 = F -1 x - 1 + 1
231 176 zcnd φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x
232 npcan F -1 x 1 F -1 x - 1 + 1 = F -1 x
233 231 117 232 sylancl φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x - 1 + 1 = F -1 x
234 230 233 eqtrd φ x M N ¬ F -1 x < K k = F -1 x 1 k + 1 = F -1 x
235 234 fveq2d φ x M N ¬ F -1 x < K k = F -1 x 1 F k + 1 = F F -1 x
236 6 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 F : M N + 1 1-1 onto M N + 1
237 236 174 161 syl2anc φ x M N ¬ F -1 x < K k = F -1 x 1 F F -1 x = x
238 229 235 237 3eqtrrd φ x M N ¬ F -1 x < K k = F -1 x 1 x = F if k < K k k + 1
239 227 238 jca φ x M N ¬ F -1 x < K k = F -1 x 1 k M N x = F if k < K k k + 1
240 239 expr φ x M N ¬ F -1 x < K k = F -1 x 1 k M N x = F if k < K k k + 1
241 168 240 sylbid φ x M N ¬ F -1 x < K k = if F -1 x < K F -1 x F -1 x 1 k M N x = F if k < K k k + 1
242 166 241 pm2.61dan φ x M N k = if F -1 x < K F -1 x F -1 x 1 k M N x = F if k < K k k + 1
243 242 expimpd φ x M N k = if F -1 x < K F -1 x F -1 x 1 k M N x = F if k < K k k + 1
244 125 243 impbid φ k M N x = F if k < K k k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
245 8 10 14 244 f1od φ J : M N 1-1 onto M N