Metamath Proof Explorer


Theorem seqf1olem2a

Description: Lemma for seqf1o . (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses seqf1o.1 φ x S y S x + ˙ y S
seqf1o.2 φ x C y C x + ˙ y = y + ˙ x
seqf1o.3 φ x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
seqf1o.4 φ N M
seqf1o.5 φ C S
seqf1olem2a.1 φ G : A C
seqf1olem2a.3 φ K A
seqf1olem2a.4 φ M N A
Assertion seqf1olem2a φ G K + ˙ seq M + ˙ G N = seq M + ˙ G N + ˙ G K

Proof

Step Hyp Ref Expression
1 seqf1o.1 φ x S y S x + ˙ y S
2 seqf1o.2 φ x C y C x + ˙ y = y + ˙ x
3 seqf1o.3 φ x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
4 seqf1o.4 φ N M
5 seqf1o.5 φ C S
6 seqf1olem2a.1 φ G : A C
7 seqf1olem2a.3 φ K A
8 seqf1olem2a.4 φ M N A
9 eluzfz2 N M N M N
10 4 9 syl φ N M N
11 fveq2 m = M seq M + ˙ G m = seq M + ˙ G M
12 11 oveq2d m = M G K + ˙ seq M + ˙ G m = G K + ˙ seq M + ˙ G M
13 11 oveq1d m = M seq M + ˙ G m + ˙ G K = seq M + ˙ G M + ˙ G K
14 12 13 eqeq12d m = M G K + ˙ seq M + ˙ G m = seq M + ˙ G m + ˙ G K G K + ˙ seq M + ˙ G M = seq M + ˙ G M + ˙ G K
15 14 imbi2d m = M φ G K + ˙ seq M + ˙ G m = seq M + ˙ G m + ˙ G K φ G K + ˙ seq M + ˙ G M = seq M + ˙ G M + ˙ G K
16 fveq2 m = n seq M + ˙ G m = seq M + ˙ G n
17 16 oveq2d m = n G K + ˙ seq M + ˙ G m = G K + ˙ seq M + ˙ G n
18 16 oveq1d m = n seq M + ˙ G m + ˙ G K = seq M + ˙ G n + ˙ G K
19 17 18 eqeq12d m = n G K + ˙ seq M + ˙ G m = seq M + ˙ G m + ˙ G K G K + ˙ seq M + ˙ G n = seq M + ˙ G n + ˙ G K
20 19 imbi2d m = n φ G K + ˙ seq M + ˙ G m = seq M + ˙ G m + ˙ G K φ G K + ˙ seq M + ˙ G n = seq M + ˙ G n + ˙ G K
21 fveq2 m = n + 1 seq M + ˙ G m = seq M + ˙ G n + 1
22 21 oveq2d m = n + 1 G K + ˙ seq M + ˙ G m = G K + ˙ seq M + ˙ G n + 1
23 21 oveq1d m = n + 1 seq M + ˙ G m + ˙ G K = seq M + ˙ G n + 1 + ˙ G K
24 22 23 eqeq12d m = n + 1 G K + ˙ seq M + ˙ G m = seq M + ˙ G m + ˙ G K G K + ˙ seq M + ˙ G n + 1 = seq M + ˙ G n + 1 + ˙ G K
25 24 imbi2d m = n + 1 φ G K + ˙ seq M + ˙ G m = seq M + ˙ G m + ˙ G K φ G K + ˙ seq M + ˙ G n + 1 = seq M + ˙ G n + 1 + ˙ G K
26 fveq2 m = N seq M + ˙ G m = seq M + ˙ G N
27 26 oveq2d m = N G K + ˙ seq M + ˙ G m = G K + ˙ seq M + ˙ G N
28 26 oveq1d m = N seq M + ˙ G m + ˙ G K = seq M + ˙ G N + ˙ G K
29 27 28 eqeq12d m = N G K + ˙ seq M + ˙ G m = seq M + ˙ G m + ˙ G K G K + ˙ seq M + ˙ G N = seq M + ˙ G N + ˙ G K
30 29 imbi2d m = N φ G K + ˙ seq M + ˙ G m = seq M + ˙ G m + ˙ G K φ G K + ˙ seq M + ˙ G N = seq M + ˙ G N + ˙ G K
31 6 7 ffvelrnd φ G K C
32 eluzel2 N M M
33 seq1 M seq M + ˙ G M = G M
34 4 32 33 3syl φ seq M + ˙ G M = G M
35 eluzfz1 N M M M N
36 4 35 syl φ M M N
37 8 36 sseldd φ M A
38 6 37 ffvelrnd φ G M C
39 34 38 eqeltrd φ seq M + ˙ G M C
40 2 31 39 caovcomd φ G K + ˙ seq M + ˙ G M = seq M + ˙ G M + ˙ G K
41 40 a1i N M φ G K + ˙ seq M + ˙ G M = seq M + ˙ G M + ˙ G K
42 oveq1 G K + ˙ seq M + ˙ G n = seq M + ˙ G n + ˙ G K G K + ˙ seq M + ˙ G n + ˙ G n + 1 = seq M + ˙ G n + ˙ G K + ˙ G n + 1
43 elfzouz n M ..^ N n M
44 43 adantl φ n M ..^ N n M
45 seqp1 n M seq M + ˙ G n + 1 = seq M + ˙ G n + ˙ G n + 1
46 44 45 syl φ n M ..^ N seq M + ˙ G n + 1 = seq M + ˙ G n + ˙ G n + 1
47 46 oveq2d φ n M ..^ N G K + ˙ seq M + ˙ G n + 1 = G K + ˙ seq M + ˙ G n + ˙ G n + 1
48 3 adantlr φ n M ..^ N x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
49 5 31 sseldd φ G K S
50 49 adantr φ n M ..^ N G K S
51 5 adantr φ n M ..^ N C S
52 51 adantr φ n M ..^ N x M n C S
53 6 adantr φ n M ..^ N G : A C
54 53 adantr φ n M ..^ N x M n G : A C
55 elfzouz2 n M ..^ N N n
56 55 adantl φ n M ..^ N N n
57 fzss2 N n M n M N
58 56 57 syl φ n M ..^ N M n M N
59 8 adantr φ n M ..^ N M N A
60 58 59 sstrd φ n M ..^ N M n A
61 60 sselda φ n M ..^ N x M n x A
62 54 61 ffvelrnd φ n M ..^ N x M n G x C
63 52 62 sseldd φ n M ..^ N x M n G x S
64 1 adantlr φ n M ..^ N x S y S x + ˙ y S
65 44 63 64 seqcl φ n M ..^ N seq M + ˙ G n S
66 fzofzp1 n M ..^ N n + 1 M N
67 66 adantl φ n M ..^ N n + 1 M N
68 59 67 sseldd φ n M ..^ N n + 1 A
69 53 68 ffvelrnd φ n M ..^ N G n + 1 C
70 51 69 sseldd φ n M ..^ N G n + 1 S
71 48 50 65 70 caovassd φ n M ..^ N G K + ˙ seq M + ˙ G n + ˙ G n + 1 = G K + ˙ seq M + ˙ G n + ˙ G n + 1
72 47 71 eqtr4d φ n M ..^ N G K + ˙ seq M + ˙ G n + 1 = G K + ˙ seq M + ˙ G n + ˙ G n + 1
73 48 65 70 50 caovassd φ n M ..^ N seq M + ˙ G n + ˙ G n + 1 + ˙ G K = seq M + ˙ G n + ˙ G n + 1 + ˙ G K
74 46 oveq1d φ n M ..^ N seq M + ˙ G n + 1 + ˙ G K = seq M + ˙ G n + ˙ G n + 1 + ˙ G K
75 48 65 50 70 caovassd φ n M ..^ N seq M + ˙ G n + ˙ G K + ˙ G n + 1 = seq M + ˙ G n + ˙ G K + ˙ G n + 1
76 2 adantlr φ n M ..^ N x C y C x + ˙ y = y + ˙ x
77 31 adantr φ n M ..^ N G K C
78 76 69 77 caovcomd φ n M ..^ N G n + 1 + ˙ G K = G K + ˙ G n + 1
79 78 oveq2d φ n M ..^ N seq M + ˙ G n + ˙ G n + 1 + ˙ G K = seq M + ˙ G n + ˙ G K + ˙ G n + 1
80 75 79 eqtr4d φ n M ..^ N seq M + ˙ G n + ˙ G K + ˙ G n + 1 = seq M + ˙ G n + ˙ G n + 1 + ˙ G K
81 73 74 80 3eqtr4d φ n M ..^ N seq M + ˙ G n + 1 + ˙ G K = seq M + ˙ G n + ˙ G K + ˙ G n + 1
82 72 81 eqeq12d φ n M ..^ N G K + ˙ seq M + ˙ G n + 1 = seq M + ˙ G n + 1 + ˙ G K G K + ˙ seq M + ˙ G n + ˙ G n + 1 = seq M + ˙ G n + ˙ G K + ˙ G n + 1
83 42 82 syl5ibr φ n M ..^ N G K + ˙ seq M + ˙ G n = seq M + ˙ G n + ˙ G K G K + ˙ seq M + ˙ G n + 1 = seq M + ˙ G n + 1 + ˙ G K
84 83 expcom n M ..^ N φ G K + ˙ seq M + ˙ G n = seq M + ˙ G n + ˙ G K G K + ˙ seq M + ˙ G n + 1 = seq M + ˙ G n + 1 + ˙ G K
85 84 a2d n M ..^ N φ G K + ˙ seq M + ˙ G n = seq M + ˙ G n + ˙ G K φ G K + ˙ seq M + ˙ G n + 1 = seq M + ˙ G n + 1 + ˙ G K
86 15 20 25 30 41 85 fzind2 N M N φ G K + ˙ seq M + ˙ G N = seq M + ˙ G N + ˙ G K
87 10 86 mpcom φ G K + ˙ seq M + ˙ G N = seq M + ˙ G N + ˙ G K