Metamath Proof Explorer


Theorem seqf2

Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqcl2.1 φ F M C
seqcl2.2 φ x C y D x + ˙ y C
seqf2.3 Z = M
seqf2.4 φ M
seqf2.5 φ x M + 1 F x D
Assertion seqf2 φ seq M + ˙ F : Z C

Proof

Step Hyp Ref Expression
1 seqcl2.1 φ F M C
2 seqcl2.2 φ x C y D x + ˙ y C
3 seqf2.3 Z = M
4 seqf2.4 φ M
5 seqf2.5 φ x M + 1 F x D
6 seqfn M seq M + ˙ F Fn M
7 4 6 syl φ seq M + ˙ F Fn M
8 1 adantr φ k M F M C
9 2 adantlr φ k M x C y D x + ˙ y C
10 simpr φ k M k M
11 elfzuz x M + 1 k x M + 1
12 11 5 sylan2 φ x M + 1 k F x D
13 12 adantlr φ k M x M + 1 k F x D
14 8 9 10 13 seqcl2 φ k M seq M + ˙ F k C
15 14 ralrimiva φ k M seq M + ˙ F k C
16 ffnfv seq M + ˙ F : M C seq M + ˙ F Fn M k M seq M + ˙ F k C
17 7 15 16 sylanbrc φ seq M + ˙ F : M C
18 3 feq2i seq M + ˙ F : Z C seq M + ˙ F : M C
19 17 18 sylibr φ seq M + ˙ F : Z C