Metamath Proof Explorer


Theorem seqfeq

Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqfeq.1 φ M
seqfeq.2 φ k M F k = G k
Assertion seqfeq φ seq M + ˙ F = seq M + ˙ G

Proof

Step Hyp Ref Expression
1 seqfeq.1 φ M
2 seqfeq.2 φ k M F k = G k
3 seqfn M seq M + ˙ F Fn M
4 1 3 syl φ seq M + ˙ F Fn M
5 seqfn M seq M + ˙ G Fn M
6 1 5 syl φ seq M + ˙ G Fn M
7 simpr φ x M x M
8 elfzuz k M x k M
9 8 2 sylan2 φ k M x F k = G k
10 9 adantlr φ x M k M x F k = G k
11 7 10 seqfveq φ x M seq M + ˙ F x = seq M + ˙ G x
12 4 6 11 eqfnfvd φ seq M + ˙ F = seq M + ˙ G