Metamath Proof Explorer


Theorem seqfeq2

Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqfveq2.1 φ K M
seqfveq2.2 φ seq M + ˙ F K = G K
seqfeq2.4 φ k K + 1 F k = G k
Assertion seqfeq2 φ seq M + ˙ F K = seq K + ˙ G

Proof

Step Hyp Ref Expression
1 seqfveq2.1 φ K M
2 seqfveq2.2 φ seq M + ˙ F K = G K
3 seqfeq2.4 φ k K + 1 F k = G k
4 eluzel2 K M M
5 seqfn M seq M + ˙ F Fn M
6 1 4 5 3syl φ seq M + ˙ F Fn M
7 uzss K M K M
8 1 7 syl φ K M
9 fnssres seq M + ˙ F Fn M K M seq M + ˙ F K Fn K
10 6 8 9 syl2anc φ seq M + ˙ F K Fn K
11 eluzelz K M K
12 seqfn K seq K + ˙ G Fn K
13 1 11 12 3syl φ seq K + ˙ G Fn K
14 fvres x K seq M + ˙ F K x = seq M + ˙ F x
15 14 adantl φ x K seq M + ˙ F K x = seq M + ˙ F x
16 1 adantr φ x K K M
17 2 adantr φ x K seq M + ˙ F K = G K
18 simpr φ x K x K
19 elfzuz k K + 1 x k K + 1
20 19 3 sylan2 φ k K + 1 x F k = G k
21 20 adantlr φ x K k K + 1 x F k = G k
22 16 17 18 21 seqfveq2 φ x K seq M + ˙ F x = seq K + ˙ G x
23 15 22 eqtrd φ x K seq M + ˙ F K x = seq K + ˙ G x
24 10 13 23 eqfnfvd φ seq M + ˙ F K = seq K + ˙ G