Metamath Proof Explorer


Theorem seqfveq

Description: Equality of sequences. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqfveq.1 φ N M
seqfveq.2 φ k M N F k = G k
Assertion seqfveq φ seq M + ˙ F N = seq M + ˙ G N

Proof

Step Hyp Ref Expression
1 seqfveq.1 φ N M
2 seqfveq.2 φ k M N F k = G k
3 eluzel2 N M M
4 1 3 syl φ M
5 uzid M M M
6 4 5 syl φ M M
7 seq1 M seq M + ˙ F M = F M
8 4 7 syl φ seq M + ˙ F M = F M
9 fveq2 k = M F k = F M
10 fveq2 k = M G k = G M
11 9 10 eqeq12d k = M F k = G k F M = G M
12 2 ralrimiva φ k M N F k = G k
13 eluzfz1 N M M M N
14 1 13 syl φ M M N
15 11 12 14 rspcdva φ F M = G M
16 8 15 eqtrd φ seq M + ˙ F M = G M
17 fzp1ss M M + 1 N M N
18 4 17 syl φ M + 1 N M N
19 18 sselda φ k M + 1 N k M N
20 19 2 syldan φ k M + 1 N F k = G k
21 6 16 1 20 seqfveq2 φ seq M + ˙ F N = seq M + ˙ G N