Step |
Hyp |
Ref |
Expression |
1 |
|
seqfveq2.1 |
|
2 |
|
seqfveq2.2 |
|
3 |
|
seqfveq2.3 |
|
4 |
|
seqfveq2.4 |
|
5 |
|
eluzfz2 |
|
6 |
3 5
|
syl |
|
7 |
|
eleq1 |
|
8 |
|
fveq2 |
|
9 |
|
fveq2 |
|
10 |
8 9
|
eqeq12d |
|
11 |
7 10
|
imbi12d |
|
12 |
11
|
imbi2d |
|
13 |
|
eleq1 |
|
14 |
|
fveq2 |
|
15 |
|
fveq2 |
|
16 |
14 15
|
eqeq12d |
|
17 |
13 16
|
imbi12d |
|
18 |
17
|
imbi2d |
|
19 |
|
eleq1 |
|
20 |
|
fveq2 |
|
21 |
|
fveq2 |
|
22 |
20 21
|
eqeq12d |
|
23 |
19 22
|
imbi12d |
|
24 |
23
|
imbi2d |
|
25 |
|
eleq1 |
|
26 |
|
fveq2 |
|
27 |
|
fveq2 |
|
28 |
26 27
|
eqeq12d |
|
29 |
25 28
|
imbi12d |
|
30 |
29
|
imbi2d |
|
31 |
|
eluzelz |
|
32 |
|
seq1 |
|
33 |
1 31 32
|
3syl |
|
34 |
2 33
|
eqtr4d |
|
35 |
34
|
a1d |
|
36 |
|
peano2fzr |
|
37 |
36
|
adantl |
|
38 |
37
|
expr |
|
39 |
38
|
imim1d |
|
40 |
|
oveq1 |
|
41 |
|
simpl |
|
42 |
|
uztrn |
|
43 |
41 1 42
|
syl2anr |
|
44 |
|
seqp1 |
|
45 |
43 44
|
syl |
|
46 |
|
seqp1 |
|
47 |
46
|
ad2antrl |
|
48 |
|
fveq2 |
|
49 |
|
fveq2 |
|
50 |
48 49
|
eqeq12d |
|
51 |
4
|
ralrimiva |
|
52 |
51
|
adantr |
|
53 |
|
eluzp1p1 |
|
54 |
53
|
ad2antrl |
|
55 |
|
elfzuz3 |
|
56 |
55
|
ad2antll |
|
57 |
|
elfzuzb |
|
58 |
54 56 57
|
sylanbrc |
|
59 |
50 52 58
|
rspcdva |
|
60 |
59
|
oveq2d |
|
61 |
47 60
|
eqtr4d |
|
62 |
45 61
|
eqeq12d |
|
63 |
40 62
|
syl5ibr |
|
64 |
39 63
|
animpimp2impd |
|
65 |
12 18 24 30 35 64
|
uzind4i |
|
66 |
3 65
|
mpcom |
|
67 |
6 66
|
mpd |
|