Metamath Proof Explorer


Theorem seqfveq2

Description: Equality of sequences. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqfveq2.1 φ K M
seqfveq2.2 φ seq M + ˙ F K = G K
seqfveq2.3 φ N K
seqfveq2.4 φ k K + 1 N F k = G k
Assertion seqfveq2 φ seq M + ˙ F N = seq K + ˙ G N

Proof

Step Hyp Ref Expression
1 seqfveq2.1 φ K M
2 seqfveq2.2 φ seq M + ˙ F K = G K
3 seqfveq2.3 φ N K
4 seqfveq2.4 φ k K + 1 N F k = G k
5 eluzfz2 N K N K N
6 3 5 syl φ N K N
7 eleq1 x = K x K N K K N
8 fveq2 x = K seq M + ˙ F x = seq M + ˙ F K
9 fveq2 x = K seq K + ˙ G x = seq K + ˙ G K
10 8 9 eqeq12d x = K seq M + ˙ F x = seq K + ˙ G x seq M + ˙ F K = seq K + ˙ G K
11 7 10 imbi12d x = K x K N seq M + ˙ F x = seq K + ˙ G x K K N seq M + ˙ F K = seq K + ˙ G K
12 11 imbi2d x = K φ x K N seq M + ˙ F x = seq K + ˙ G x φ K K N seq M + ˙ F K = seq K + ˙ G K
13 eleq1 x = n x K N n K N
14 fveq2 x = n seq M + ˙ F x = seq M + ˙ F n
15 fveq2 x = n seq K + ˙ G x = seq K + ˙ G n
16 14 15 eqeq12d x = n seq M + ˙ F x = seq K + ˙ G x seq M + ˙ F n = seq K + ˙ G n
17 13 16 imbi12d x = n x K N seq M + ˙ F x = seq K + ˙ G x n K N seq M + ˙ F n = seq K + ˙ G n
18 17 imbi2d x = n φ x K N seq M + ˙ F x = seq K + ˙ G x φ n K N seq M + ˙ F n = seq K + ˙ G n
19 eleq1 x = n + 1 x K N n + 1 K N
20 fveq2 x = n + 1 seq M + ˙ F x = seq M + ˙ F n + 1
21 fveq2 x = n + 1 seq K + ˙ G x = seq K + ˙ G n + 1
22 20 21 eqeq12d x = n + 1 seq M + ˙ F x = seq K + ˙ G x seq M + ˙ F n + 1 = seq K + ˙ G n + 1
23 19 22 imbi12d x = n + 1 x K N seq M + ˙ F x = seq K + ˙ G x n + 1 K N seq M + ˙ F n + 1 = seq K + ˙ G n + 1
24 23 imbi2d x = n + 1 φ x K N seq M + ˙ F x = seq K + ˙ G x φ n + 1 K N seq M + ˙ F n + 1 = seq K + ˙ G n + 1
25 eleq1 x = N x K N N K N
26 fveq2 x = N seq M + ˙ F x = seq M + ˙ F N
27 fveq2 x = N seq K + ˙ G x = seq K + ˙ G N
28 26 27 eqeq12d x = N seq M + ˙ F x = seq K + ˙ G x seq M + ˙ F N = seq K + ˙ G N
29 25 28 imbi12d x = N x K N seq M + ˙ F x = seq K + ˙ G x N K N seq M + ˙ F N = seq K + ˙ G N
30 29 imbi2d x = N φ x K N seq M + ˙ F x = seq K + ˙ G x φ N K N seq M + ˙ F N = seq K + ˙ G N
31 eluzelz K M K
32 seq1 K seq K + ˙ G K = G K
33 1 31 32 3syl φ seq K + ˙ G K = G K
34 2 33 eqtr4d φ seq M + ˙ F K = seq K + ˙ G K
35 34 a1d φ K K N seq M + ˙ F K = seq K + ˙ G K
36 peano2fzr n K n + 1 K N n K N
37 36 adantl φ n K n + 1 K N n K N
38 37 expr φ n K n + 1 K N n K N
39 38 imim1d φ n K n K N seq M + ˙ F n = seq K + ˙ G n n + 1 K N seq M + ˙ F n = seq K + ˙ G n
40 oveq1 seq M + ˙ F n = seq K + ˙ G n seq M + ˙ F n + ˙ F n + 1 = seq K + ˙ G n + ˙ F n + 1
41 simpl n K n + 1 K N n K
42 uztrn n K K M n M
43 41 1 42 syl2anr φ n K n + 1 K N n M
44 seqp1 n M seq M + ˙ F n + 1 = seq M + ˙ F n + ˙ F n + 1
45 43 44 syl φ n K n + 1 K N seq M + ˙ F n + 1 = seq M + ˙ F n + ˙ F n + 1
46 seqp1 n K seq K + ˙ G n + 1 = seq K + ˙ G n + ˙ G n + 1
47 46 ad2antrl φ n K n + 1 K N seq K + ˙ G n + 1 = seq K + ˙ G n + ˙ G n + 1
48 fveq2 k = n + 1 F k = F n + 1
49 fveq2 k = n + 1 G k = G n + 1
50 48 49 eqeq12d k = n + 1 F k = G k F n + 1 = G n + 1
51 4 ralrimiva φ k K + 1 N F k = G k
52 51 adantr φ n K n + 1 K N k K + 1 N F k = G k
53 eluzp1p1 n K n + 1 K + 1
54 53 ad2antrl φ n K n + 1 K N n + 1 K + 1
55 elfzuz3 n + 1 K N N n + 1
56 55 ad2antll φ n K n + 1 K N N n + 1
57 elfzuzb n + 1 K + 1 N n + 1 K + 1 N n + 1
58 54 56 57 sylanbrc φ n K n + 1 K N n + 1 K + 1 N
59 50 52 58 rspcdva φ n K n + 1 K N F n + 1 = G n + 1
60 59 oveq2d φ n K n + 1 K N seq K + ˙ G n + ˙ F n + 1 = seq K + ˙ G n + ˙ G n + 1
61 47 60 eqtr4d φ n K n + 1 K N seq K + ˙ G n + 1 = seq K + ˙ G n + ˙ F n + 1
62 45 61 eqeq12d φ n K n + 1 K N seq M + ˙ F n + 1 = seq K + ˙ G n + 1 seq M + ˙ F n + ˙ F n + 1 = seq K + ˙ G n + ˙ F n + 1
63 40 62 syl5ibr φ n K n + 1 K N seq M + ˙ F n = seq K + ˙ G n seq M + ˙ F n + 1 = seq K + ˙ G n + 1
64 39 63 animpimp2impd n K φ n K N seq M + ˙ F n = seq K + ˙ G n φ n + 1 K N seq M + ˙ F n + 1 = seq K + ˙ G n + 1
65 12 18 24 30 35 64 uzind4i N K φ N K N seq M + ˙ F N = seq K + ˙ G N
66 3 65 mpcom φ N K N seq M + ˙ F N = seq K + ˙ G N
67 6 66 mpd φ seq M + ˙ F N = seq K + ˙ G N