Metamath Proof Explorer


Theorem seqid

Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for .+ ) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqid.1 φ x S Z + ˙ x = x
seqid.2 φ Z S
seqid.3 φ N M
seqid.4 φ F N S
seqid.5 φ x M N 1 F x = Z
Assertion seqid φ seq M + ˙ F N = seq N + ˙ F

Proof

Step Hyp Ref Expression
1 seqid.1 φ x S Z + ˙ x = x
2 seqid.2 φ Z S
3 seqid.3 φ N M
4 seqid.4 φ F N S
5 seqid.5 φ x M N 1 F x = Z
6 eluzelz N M N
7 seq1 N seq N + ˙ F N = F N
8 3 6 7 3syl φ seq N + ˙ F N = F N
9 seqeq1 N = M seq N + ˙ F = seq M + ˙ F
10 9 fveq1d N = M seq N + ˙ F N = seq M + ˙ F N
11 10 eqeq1d N = M seq N + ˙ F N = F N seq M + ˙ F N = F N
12 8 11 syl5ibcom φ N = M seq M + ˙ F N = F N
13 eluzel2 N M M
14 3 13 syl φ M
15 seqm1 M N M + 1 seq M + ˙ F N = seq M + ˙ F N 1 + ˙ F N
16 14 15 sylan φ N M + 1 seq M + ˙ F N = seq M + ˙ F N 1 + ˙ F N
17 oveq2 x = Z Z + ˙ x = Z + ˙ Z
18 id x = Z x = Z
19 17 18 eqeq12d x = Z Z + ˙ x = x Z + ˙ Z = Z
20 1 ralrimiva φ x S Z + ˙ x = x
21 19 20 2 rspcdva φ Z + ˙ Z = Z
22 21 adantr φ N M + 1 Z + ˙ Z = Z
23 eluzp1m1 M N M + 1 N 1 M
24 14 23 sylan φ N M + 1 N 1 M
25 5 adantlr φ N M + 1 x M N 1 F x = Z
26 22 24 25 seqid3 φ N M + 1 seq M + ˙ F N 1 = Z
27 26 oveq1d φ N M + 1 seq M + ˙ F N 1 + ˙ F N = Z + ˙ F N
28 oveq2 x = F N Z + ˙ x = Z + ˙ F N
29 id x = F N x = F N
30 28 29 eqeq12d x = F N Z + ˙ x = x Z + ˙ F N = F N
31 20 adantr φ N M + 1 x S Z + ˙ x = x
32 4 adantr φ N M + 1 F N S
33 30 31 32 rspcdva φ N M + 1 Z + ˙ F N = F N
34 16 27 33 3eqtrd φ N M + 1 seq M + ˙ F N = F N
35 34 ex φ N M + 1 seq M + ˙ F N = F N
36 uzp1 N M N = M N M + 1
37 3 36 syl φ N = M N M + 1
38 12 35 37 mpjaod φ seq M + ˙ F N = F N
39 eqidd φ x N + 1 F x = F x
40 3 38 39 seqfeq2 φ seq M + ˙ F N = seq N + ˙ F