Metamath Proof Explorer


Theorem seqom0g

Description: Value of an index-aware recursive definition at 0. (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by AV, 17-Sep-2021)

Ref Expression
Hypothesis seqom.a G = seq ω F I
Assertion seqom0g I V G = I

Proof

Step Hyp Ref Expression
1 seqom.a G = seq ω F I
2 df-seqom seq ω F I = rec a ω , b V suc a a F b I I ω
3 1 2 eqtri G = rec a ω , b V suc a a F b I I ω
4 3 fveq1i G = rec a ω , b V suc a a F b I I ω
5 seqomlem0 rec a ω , b V suc a a F b I I = rec c ω , d V suc c c F d I I
6 5 seqomlem3 rec a ω , b V suc a a F b I I ω = I I
7 4 6 eqtri G = I I
8 fvi I V I I = I
9 7 8 eqtrid I V G = I