Metamath Proof Explorer


Theorem seqomeq12

Description: Equality theorem for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Assertion seqomeq12 A = B C = D seq ω A C = seq ω B D

Proof

Step Hyp Ref Expression
1 oveq A = B a A b = a B b
2 1 opeq2d A = B suc a a A b = suc a a B b
3 2 mpoeq3dv A = B a ω , b V suc a a A b = a ω , b V suc a a B b
4 fveq2 C = D I C = I D
5 4 opeq2d C = D I C = I D
6 rdgeq12 a ω , b V suc a a A b = a ω , b V suc a a B b I C = I D rec a ω , b V suc a a A b I C = rec a ω , b V suc a a B b I D
7 3 5 6 syl2an A = B C = D rec a ω , b V suc a a A b I C = rec a ω , b V suc a a B b I D
8 7 imaeq1d A = B C = D rec a ω , b V suc a a A b I C ω = rec a ω , b V suc a a B b I D ω
9 df-seqom seq ω A C = rec a ω , b V suc a a A b I C ω
10 df-seqom seq ω B D = rec a ω , b V suc a a B b I D ω
11 8 9 10 3eqtr4g A = B C = D seq ω A C = seq ω B D