Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite recursion
seqomeq12
Next ⟩
fnseqom
Metamath Proof Explorer
Ascii
Unicode
Theorem
seqomeq12
Description:
Equality theorem for
seqom
.
(Contributed by
Stefan O'Rear
, 1-Nov-2014)
Ref
Expression
Assertion
seqomeq12
⊢
A
=
B
∧
C
=
D
→
seq
ω
A
C
=
seq
ω
B
D
Proof
Step
Hyp
Ref
Expression
1
oveq
⊢
A
=
B
→
a
A
b
=
a
B
b
2
1
opeq2d
⊢
A
=
B
→
suc
⁡
a
a
A
b
=
suc
⁡
a
a
B
b
3
2
mpoeq3dv
⊢
A
=
B
→
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
A
b
=
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
B
b
4
fveq2
⊢
C
=
D
→
I
⁡
C
=
I
⁡
D
5
4
opeq2d
⊢
C
=
D
→
∅
I
⁡
C
=
∅
I
⁡
D
6
rdgeq12
⊢
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
A
b
=
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
B
b
∧
∅
I
⁡
C
=
∅
I
⁡
D
→
rec
⁡
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
A
b
∅
I
⁡
C
=
rec
⁡
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
B
b
∅
I
⁡
D
7
3
5
6
syl2an
⊢
A
=
B
∧
C
=
D
→
rec
⁡
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
A
b
∅
I
⁡
C
=
rec
⁡
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
B
b
∅
I
⁡
D
8
7
imaeq1d
⊢
A
=
B
∧
C
=
D
→
rec
⁡
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
A
b
∅
I
⁡
C
ω
=
rec
⁡
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
B
b
∅
I
⁡
D
ω
9
df-seqom
⊢
seq
ω
A
C
=
rec
⁡
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
A
b
∅
I
⁡
C
ω
10
df-seqom
⊢
seq
ω
B
D
=
rec
⁡
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
B
b
∅
I
⁡
D
ω
11
8
9
10
3eqtr4g
⊢
A
=
B
∧
C
=
D
→
seq
ω
A
C
=
seq
ω
B
D