Metamath Proof Explorer


Theorem seqomlem0

Description: Lemma for seqom . Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Assertion seqomlem0 rec a ω , b V suc a a F b I I = rec c ω , d V suc c c F d I I

Proof

Step Hyp Ref Expression
1 suceq a = c suc a = suc c
2 oveq1 a = c a F b = c F b
3 1 2 opeq12d a = c suc a a F b = suc c c F b
4 oveq2 b = d c F b = c F d
5 4 opeq2d b = d suc c c F b = suc c c F d
6 3 5 cbvmpov a ω , b V suc a a F b = c ω , d V suc c c F d
7 rdgeq1 a ω , b V suc a a F b = c ω , d V suc c c F d rec a ω , b V suc a a F b I I = rec c ω , d V suc c c F d I I
8 6 7 ax-mp rec a ω , b V suc a a F b I I = rec c ω , d V suc c c F d I I