Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite recursion
seqomlem0
Next ⟩
seqomlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
seqomlem0
Description:
Lemma for
seqom
. Change bound variables.
(Contributed by
Stefan O'Rear
, 1-Nov-2014)
Ref
Expression
Assertion
seqomlem0
⊢
rec
⁡
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
F
b
∅
I
⁡
I
=
rec
⁡
c
∈
ω
,
d
∈
V
⟼
suc
⁡
c
c
F
d
∅
I
⁡
I
Proof
Step
Hyp
Ref
Expression
1
suceq
⊢
a
=
c
→
suc
⁡
a
=
suc
⁡
c
2
oveq1
⊢
a
=
c
→
a
F
b
=
c
F
b
3
1
2
opeq12d
⊢
a
=
c
→
suc
⁡
a
a
F
b
=
suc
⁡
c
c
F
b
4
oveq2
⊢
b
=
d
→
c
F
b
=
c
F
d
5
4
opeq2d
⊢
b
=
d
→
suc
⁡
c
c
F
b
=
suc
⁡
c
c
F
d
6
3
5
cbvmpov
⊢
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
F
b
=
c
∈
ω
,
d
∈
V
⟼
suc
⁡
c
c
F
d
7
rdgeq1
⊢
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
F
b
=
c
∈
ω
,
d
∈
V
⟼
suc
⁡
c
c
F
d
→
rec
⁡
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
F
b
∅
I
⁡
I
=
rec
⁡
c
∈
ω
,
d
∈
V
⟼
suc
⁡
c
c
F
d
∅
I
⁡
I
8
6
7
ax-mp
⊢
rec
⁡
a
∈
ω
,
b
∈
V
⟼
suc
⁡
a
a
F
b
∅
I
⁡
I
=
rec
⁡
c
∈
ω
,
d
∈
V
⟼
suc
⁡
c
c
F
d
∅
I
⁡
I