Metamath Proof Explorer


Theorem seqomlem3

Description: Lemma for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis seqomlem.a Q = rec i ω , v V suc i i F v I I
Assertion seqomlem3 Q ω = I I

Proof

Step Hyp Ref Expression
1 seqomlem.a Q = rec i ω , v V suc i i F v I I
2 peano1 ω
3 fvres ω Q ω = Q
4 2 3 ax-mp Q ω = Q
5 1 fveq1i Q = rec i ω , v V suc i i F v I I
6 opex I I V
7 6 rdg0 rec i ω , v V suc i i F v I I = I I
8 4 5 7 3eqtri Q ω = I I
9 frfnom rec i ω , v V suc i i F v I I ω Fn ω
10 1 reseq1i Q ω = rec i ω , v V suc i i F v I I ω
11 10 fneq1i Q ω Fn ω rec i ω , v V suc i i F v I I ω Fn ω
12 9 11 mpbir Q ω Fn ω
13 fnfvelrn Q ω Fn ω ω Q ω ran Q ω
14 12 2 13 mp2an Q ω ran Q ω
15 8 14 eqeltrri I I ran Q ω
16 df-ima Q ω = ran Q ω
17 15 16 eleqtrri I I Q ω
18 df-br Q ω I I I I Q ω
19 17 18 mpbir Q ω I I
20 1 seqomlem2 Q ω Fn ω
21 fnbrfvb Q ω Fn ω ω Q ω = I I Q ω I I
22 20 2 21 mp2an Q ω = I I Q ω I I
23 19 22 mpbir Q ω = I I