Metamath Proof Explorer


Theorem seqomsuc

Description: Value of an index-aware recursive definition at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis seqom.a G = seq ω F I
Assertion seqomsuc A ω G suc A = A F G A

Proof

Step Hyp Ref Expression
1 seqom.a G = seq ω F I
2 seqomlem0 rec a ω , b V suc a a F b I I = rec c ω , d V suc c c F d I I
3 2 seqomlem4 A ω rec a ω , b V suc a a F b I I ω suc A = A F rec a ω , b V suc a a F b I I ω A
4 df-seqom seq ω F I = rec a ω , b V suc a a F b I I ω
5 1 4 eqtri G = rec a ω , b V suc a a F b I I ω
6 5 fveq1i G suc A = rec a ω , b V suc a a F b I I ω suc A
7 5 fveq1i G A = rec a ω , b V suc a a F b I I ω A
8 7 oveq2i A F G A = A F rec a ω , b V suc a a F b I I ω A
9 3 6 8 3eqtr4g A ω G suc A = A F G A