Metamath Proof Explorer


Theorem seqshft

Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-Feb-2014)

Ref Expression
Hypothesis seqshft.1 F V
Assertion seqshft M N seq M + ˙ F shift N = seq M N + ˙ F shift N

Proof

Step Hyp Ref Expression
1 seqshft.1 F V
2 seqfn M seq M + ˙ F shift N Fn M
3 2 adantr M N seq M + ˙ F shift N Fn M
4 zsubcl M N M N
5 seqfn M N seq M N + ˙ F Fn M N
6 4 5 syl M N seq M N + ˙ F Fn M N
7 zcn N N
8 7 adantl M N N
9 seqex seq M N + ˙ F V
10 9 shftfn seq M N + ˙ F Fn M N N seq M N + ˙ F shift N Fn x | x N M N
11 6 8 10 syl2anc M N seq M N + ˙ F shift N Fn x | x N M N
12 simpr M N N
13 shftuz N M N x | x N M N = M - N + N
14 12 4 13 syl2anc M N x | x N M N = M - N + N
15 zcn M M
16 npcan M N M - N + N = M
17 15 7 16 syl2an M N M - N + N = M
18 17 fveq2d M N M - N + N = M
19 14 18 eqtrd M N x | x N M N = M
20 19 fneq2d M N seq M N + ˙ F shift N Fn x | x N M N seq M N + ˙ F shift N Fn M
21 11 20 mpbid M N seq M N + ˙ F shift N Fn M
22 negsub M N M + -N = M N
23 15 7 22 syl2an M N M + -N = M N
24 23 adantr M N z M M + -N = M N
25 24 seqeq1d M N z M seq M + -N + ˙ F = seq M N + ˙ F
26 eluzelcn z M z
27 negsub z N z + -N = z N
28 26 8 27 syl2anr M N z M z + -N = z N
29 25 28 fveq12d M N z M seq M + -N + ˙ F z + -N = seq M N + ˙ F z N
30 simpr M N z M z M
31 znegcl N N
32 31 ad2antlr M N z M N
33 elfzelz y M z y
34 33 zcnd y M z y
35 1 shftval N y F shift N y = F y N
36 negsub y N y + -N = y N
37 36 ancoms N y y + -N = y N
38 37 fveq2d N y F y + -N = F y N
39 35 38 eqtr4d N y F shift N y = F y + -N
40 7 34 39 syl2an N y M z F shift N y = F y + -N
41 40 ad4ant24 M N z M y M z F shift N y = F y + -N
42 30 32 41 seqshft2 M N z M seq M + ˙ F shift N z = seq M + -N + ˙ F z + -N
43 9 shftval N z seq M N + ˙ F shift N z = seq M N + ˙ F z N
44 8 26 43 syl2an M N z M seq M N + ˙ F shift N z = seq M N + ˙ F z N
45 29 42 44 3eqtr4d M N z M seq M + ˙ F shift N z = seq M N + ˙ F shift N z
46 3 21 45 eqfnfvd M N seq M + ˙ F shift N = seq M N + ˙ F shift N