Metamath Proof Explorer


Theorem seqsplit

Description: Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqsplit.1 φ x S y S x + ˙ y S
seqsplit.2 φ x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
seqsplit.3 φ N M + 1
seqsplit.4 φ M K
seqsplit.5 φ x K N F x S
Assertion seqsplit φ seq K + ˙ F N = seq K + ˙ F M + ˙ seq M + 1 + ˙ F N

Proof

Step Hyp Ref Expression
1 seqsplit.1 φ x S y S x + ˙ y S
2 seqsplit.2 φ x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
3 seqsplit.3 φ N M + 1
4 seqsplit.4 φ M K
5 seqsplit.5 φ x K N F x S
6 eluzfz2 N M + 1 N M + 1 N
7 3 6 syl φ N M + 1 N
8 eleq1 x = M + 1 x M + 1 N M + 1 M + 1 N
9 fveq2 x = M + 1 seq K + ˙ F x = seq K + ˙ F M + 1
10 fveq2 x = M + 1 seq M + 1 + ˙ F x = seq M + 1 + ˙ F M + 1
11 10 oveq2d x = M + 1 seq K + ˙ F M + ˙ seq M + 1 + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F M + 1
12 9 11 eqeq12d x = M + 1 seq K + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F x seq K + ˙ F M + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F M + 1
13 8 12 imbi12d x = M + 1 x M + 1 N seq K + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F x M + 1 M + 1 N seq K + ˙ F M + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F M + 1
14 13 imbi2d x = M + 1 φ x M + 1 N seq K + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F x φ M + 1 M + 1 N seq K + ˙ F M + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F M + 1
15 eleq1 x = n x M + 1 N n M + 1 N
16 fveq2 x = n seq K + ˙ F x = seq K + ˙ F n
17 fveq2 x = n seq M + 1 + ˙ F x = seq M + 1 + ˙ F n
18 17 oveq2d x = n seq K + ˙ F M + ˙ seq M + 1 + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n
19 16 18 eqeq12d x = n seq K + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F x seq K + ˙ F n = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n
20 15 19 imbi12d x = n x M + 1 N seq K + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F x n M + 1 N seq K + ˙ F n = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n
21 20 imbi2d x = n φ x M + 1 N seq K + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F x φ n M + 1 N seq K + ˙ F n = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n
22 eleq1 x = n + 1 x M + 1 N n + 1 M + 1 N
23 fveq2 x = n + 1 seq K + ˙ F x = seq K + ˙ F n + 1
24 fveq2 x = n + 1 seq M + 1 + ˙ F x = seq M + 1 + ˙ F n + 1
25 24 oveq2d x = n + 1 seq K + ˙ F M + ˙ seq M + 1 + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + 1
26 23 25 eqeq12d x = n + 1 seq K + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F x seq K + ˙ F n + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + 1
27 22 26 imbi12d x = n + 1 x M + 1 N seq K + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F x n + 1 M + 1 N seq K + ˙ F n + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + 1
28 27 imbi2d x = n + 1 φ x M + 1 N seq K + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F x φ n + 1 M + 1 N seq K + ˙ F n + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + 1
29 eleq1 x = N x M + 1 N N M + 1 N
30 fveq2 x = N seq K + ˙ F x = seq K + ˙ F N
31 fveq2 x = N seq M + 1 + ˙ F x = seq M + 1 + ˙ F N
32 31 oveq2d x = N seq K + ˙ F M + ˙ seq M + 1 + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F N
33 30 32 eqeq12d x = N seq K + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F x seq K + ˙ F N = seq K + ˙ F M + ˙ seq M + 1 + ˙ F N
34 29 33 imbi12d x = N x M + 1 N seq K + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F x N M + 1 N seq K + ˙ F N = seq K + ˙ F M + ˙ seq M + 1 + ˙ F N
35 34 imbi2d x = N φ x M + 1 N seq K + ˙ F x = seq K + ˙ F M + ˙ seq M + 1 + ˙ F x φ N M + 1 N seq K + ˙ F N = seq K + ˙ F M + ˙ seq M + 1 + ˙ F N
36 seqp1 M K seq K + ˙ F M + 1 = seq K + ˙ F M + ˙ F M + 1
37 4 36 syl φ seq K + ˙ F M + 1 = seq K + ˙ F M + ˙ F M + 1
38 eluzel2 N M + 1 M + 1
39 seq1 M + 1 seq M + 1 + ˙ F M + 1 = F M + 1
40 3 38 39 3syl φ seq M + 1 + ˙ F M + 1 = F M + 1
41 40 oveq2d φ seq K + ˙ F M + ˙ seq M + 1 + ˙ F M + 1 = seq K + ˙ F M + ˙ F M + 1
42 37 41 eqtr4d φ seq K + ˙ F M + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F M + 1
43 42 a1i13 M + 1 φ M + 1 M + 1 N seq K + ˙ F M + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F M + 1
44 peano2fzr n M + 1 n + 1 M + 1 N n M + 1 N
45 44 adantl φ n M + 1 n + 1 M + 1 N n M + 1 N
46 45 expr φ n M + 1 n + 1 M + 1 N n M + 1 N
47 46 imim1d φ n M + 1 n M + 1 N seq K + ˙ F n = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n n + 1 M + 1 N seq K + ˙ F n = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n
48 oveq1 seq K + ˙ F n = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n seq K + ˙ F n + ˙ F n + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + ˙ F n + 1
49 simprl φ n M + 1 n + 1 M + 1 N n M + 1
50 peano2uz M K M + 1 K
51 4 50 syl φ M + 1 K
52 51 adantr φ n M + 1 n + 1 M + 1 N M + 1 K
53 uztrn n M + 1 M + 1 K n K
54 49 52 53 syl2anc φ n M + 1 n + 1 M + 1 N n K
55 seqp1 n K seq K + ˙ F n + 1 = seq K + ˙ F n + ˙ F n + 1
56 54 55 syl φ n M + 1 n + 1 M + 1 N seq K + ˙ F n + 1 = seq K + ˙ F n + ˙ F n + 1
57 seqp1 n M + 1 seq M + 1 + ˙ F n + 1 = seq M + 1 + ˙ F n + ˙ F n + 1
58 49 57 syl φ n M + 1 n + 1 M + 1 N seq M + 1 + ˙ F n + 1 = seq M + 1 + ˙ F n + ˙ F n + 1
59 58 oveq2d φ n M + 1 n + 1 M + 1 N seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + ˙ F n + 1
60 simpl φ n M + 1 n + 1 M + 1 N φ
61 eluzelz M K M
62 4 61 syl φ M
63 peano2uzr M N M + 1 N M
64 62 3 63 syl2anc φ N M
65 fzss2 N M K M K N
66 64 65 syl φ K M K N
67 66 sselda φ x K M x K N
68 67 5 syldan φ x K M F x S
69 4 68 1 seqcl φ seq K + ˙ F M S
70 69 adantr φ n M + 1 n + 1 M + 1 N seq K + ˙ F M S
71 elfzuz3 n M + 1 N N n
72 fzss2 N n M + 1 n M + 1 N
73 45 71 72 3syl φ n M + 1 n + 1 M + 1 N M + 1 n M + 1 N
74 fzss1 M + 1 K M + 1 N K N
75 4 50 74 3syl φ M + 1 N K N
76 75 adantr φ n M + 1 n + 1 M + 1 N M + 1 N K N
77 73 76 sstrd φ n M + 1 n + 1 M + 1 N M + 1 n K N
78 77 sselda φ n M + 1 n + 1 M + 1 N x M + 1 n x K N
79 5 adantlr φ n M + 1 n + 1 M + 1 N x K N F x S
80 78 79 syldan φ n M + 1 n + 1 M + 1 N x M + 1 n F x S
81 1 adantlr φ n M + 1 n + 1 M + 1 N x S y S x + ˙ y S
82 49 80 81 seqcl φ n M + 1 n + 1 M + 1 N seq M + 1 + ˙ F n S
83 fveq2 x = n + 1 F x = F n + 1
84 83 eleq1d x = n + 1 F x S F n + 1 S
85 5 ralrimiva φ x K N F x S
86 85 adantr φ n M + 1 n + 1 M + 1 N x K N F x S
87 simpr n M + 1 n + 1 M + 1 N n + 1 M + 1 N
88 ssel2 M + 1 N K N n + 1 M + 1 N n + 1 K N
89 75 87 88 syl2an φ n M + 1 n + 1 M + 1 N n + 1 K N
90 84 86 89 rspcdva φ n M + 1 n + 1 M + 1 N F n + 1 S
91 2 caovassg φ seq K + ˙ F M S seq M + 1 + ˙ F n S F n + 1 S seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + ˙ F n + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + ˙ F n + 1
92 60 70 82 90 91 syl13anc φ n M + 1 n + 1 M + 1 N seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + ˙ F n + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + ˙ F n + 1
93 59 92 eqtr4d φ n M + 1 n + 1 M + 1 N seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + ˙ F n + 1
94 56 93 eqeq12d φ n M + 1 n + 1 M + 1 N seq K + ˙ F n + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + 1 seq K + ˙ F n + ˙ F n + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + ˙ F n + 1
95 48 94 syl5ibr φ n M + 1 n + 1 M + 1 N seq K + ˙ F n = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n seq K + ˙ F n + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + 1
96 47 95 animpimp2impd n M + 1 φ n M + 1 N seq K + ˙ F n = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n φ n + 1 M + 1 N seq K + ˙ F n + 1 = seq K + ˙ F M + ˙ seq M + 1 + ˙ F n + 1
97 14 21 28 35 43 96 uzind4 N M + 1 φ N M + 1 N seq K + ˙ F N = seq K + ˙ F M + ˙ seq M + 1 + ˙ F N
98 3 97 mpcom φ N M + 1 N seq K + ˙ F N = seq K + ˙ F M + ˙ seq M + 1 + ˙ F N
99 7 98 mpd φ seq K + ˙ F N = seq K + ˙ F M + ˙ seq M + 1 + ˙ F N