Metamath Proof Explorer


Theorem seqz

Description: If the operation .+ has an absorbing element Z (a.k.a. zero element), then any sequence containing a Z evaluates to Z . (Contributed by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqhomo.1 φ x S y S x + ˙ y S
seqhomo.2 φ x M N F x S
seqz.3 φ x S Z + ˙ x = Z
seqz.4 φ x S x + ˙ Z = Z
seqz.5 φ K M N
seqz.6 φ N V
seqz.7 φ F K = Z
Assertion seqz φ seq M + ˙ F N = Z

Proof

Step Hyp Ref Expression
1 seqhomo.1 φ x S y S x + ˙ y S
2 seqhomo.2 φ x M N F x S
3 seqz.3 φ x S Z + ˙ x = Z
4 seqz.4 φ x S x + ˙ Z = Z
5 seqz.5 φ K M N
6 seqz.6 φ N V
7 seqz.7 φ F K = Z
8 elfzuz K M N K M
9 5 8 syl φ K M
10 5 elfzelzd φ K
11 seq1 K seq K + ˙ F K = F K
12 10 11 syl φ seq K + ˙ F K = F K
13 12 7 eqtrd φ seq K + ˙ F K = Z
14 seqeq1 K = M seq K + ˙ F = seq M + ˙ F
15 14 fveq1d K = M seq K + ˙ F K = seq M + ˙ F K
16 15 eqeq1d K = M seq K + ˙ F K = Z seq M + ˙ F K = Z
17 13 16 syl5ibcom φ K = M seq M + ˙ F K = Z
18 eluzel2 K M M
19 9 18 syl φ M
20 seqm1 M K M + 1 seq M + ˙ F K = seq M + ˙ F K 1 + ˙ F K
21 19 20 sylan φ K M + 1 seq M + ˙ F K = seq M + ˙ F K 1 + ˙ F K
22 7 adantr φ K M + 1 F K = Z
23 22 oveq2d φ K M + 1 seq M + ˙ F K 1 + ˙ F K = seq M + ˙ F K 1 + ˙ Z
24 oveq1 x = seq M + ˙ F K 1 x + ˙ Z = seq M + ˙ F K 1 + ˙ Z
25 24 eqeq1d x = seq M + ˙ F K 1 x + ˙ Z = Z seq M + ˙ F K 1 + ˙ Z = Z
26 4 ralrimiva φ x S x + ˙ Z = Z
27 26 adantr φ K M + 1 x S x + ˙ Z = Z
28 eluzp1m1 M K M + 1 K 1 M
29 19 28 sylan φ K M + 1 K 1 M
30 fzssp1 M K 1 M K - 1 + 1
31 10 zcnd φ K
32 ax-1cn 1
33 npcan K 1 K - 1 + 1 = K
34 31 32 33 sylancl φ K - 1 + 1 = K
35 34 oveq2d φ M K - 1 + 1 = M K
36 30 35 sseqtrid φ M K 1 M K
37 elfzuz3 K M N N K
38 5 37 syl φ N K
39 fzss2 N K M K M N
40 38 39 syl φ M K M N
41 36 40 sstrd φ M K 1 M N
42 41 adantr φ K M + 1 M K 1 M N
43 42 sselda φ K M + 1 x M K 1 x M N
44 2 adantlr φ K M + 1 x M N F x S
45 43 44 syldan φ K M + 1 x M K 1 F x S
46 1 adantlr φ K M + 1 x S y S x + ˙ y S
47 29 45 46 seqcl φ K M + 1 seq M + ˙ F K 1 S
48 25 27 47 rspcdva φ K M + 1 seq M + ˙ F K 1 + ˙ Z = Z
49 23 48 eqtrd φ K M + 1 seq M + ˙ F K 1 + ˙ F K = Z
50 21 49 eqtrd φ K M + 1 seq M + ˙ F K = Z
51 50 ex φ K M + 1 seq M + ˙ F K = Z
52 uzp1 K M K = M K M + 1
53 9 52 syl φ K = M K M + 1
54 17 51 53 mpjaod φ seq M + ˙ F K = Z
55 54 7 eqtr4d φ seq M + ˙ F K = F K
56 eqidd φ x K + 1 N F x = F x
57 9 55 38 56 seqfveq2 φ seq M + ˙ F N = seq K + ˙ F N
58 fvex F K V
59 58 elsn F K Z F K = Z
60 7 59 sylibr φ F K Z
61 simprl φ x Z y S x Z
62 velsn x Z x = Z
63 61 62 sylib φ x Z y S x = Z
64 63 oveq1d φ x Z y S x + ˙ y = Z + ˙ y
65 oveq2 x = y Z + ˙ x = Z + ˙ y
66 65 eqeq1d x = y Z + ˙ x = Z Z + ˙ y = Z
67 3 ralrimiva φ x S Z + ˙ x = Z
68 67 adantr φ x Z y S x S Z + ˙ x = Z
69 simprr φ x Z y S y S
70 66 68 69 rspcdva φ x Z y S Z + ˙ y = Z
71 64 70 eqtrd φ x Z y S x + ˙ y = Z
72 ovex x + ˙ y V
73 72 elsn x + ˙ y Z x + ˙ y = Z
74 71 73 sylibr φ x Z y S x + ˙ y Z
75 peano2uz K M K + 1 M
76 9 75 syl φ K + 1 M
77 fzss1 K + 1 M K + 1 N M N
78 76 77 syl φ K + 1 N M N
79 78 sselda φ x K + 1 N x M N
80 79 2 syldan φ x K + 1 N F x S
81 60 74 38 80 seqcl2 φ seq K + ˙ F N Z
82 elsni seq K + ˙ F N Z seq K + ˙ F N = Z
83 81 82 syl φ seq K + ˙ F N = Z
84 57 83 eqtrd φ seq M + ˙ F N = Z