Step |
Hyp |
Ref |
Expression |
1 |
|
seqhomo.1 |
|
2 |
|
seqhomo.2 |
|
3 |
|
seqz.3 |
|
4 |
|
seqz.4 |
|
5 |
|
seqz.5 |
|
6 |
|
seqz.6 |
|
7 |
|
seqz.7 |
|
8 |
|
elfzuz |
|
9 |
5 8
|
syl |
|
10 |
5
|
elfzelzd |
|
11 |
|
seq1 |
|
12 |
10 11
|
syl |
|
13 |
12 7
|
eqtrd |
|
14 |
|
seqeq1 |
|
15 |
14
|
fveq1d |
|
16 |
15
|
eqeq1d |
|
17 |
13 16
|
syl5ibcom |
|
18 |
|
eluzel2 |
|
19 |
9 18
|
syl |
|
20 |
|
seqm1 |
|
21 |
19 20
|
sylan |
|
22 |
7
|
adantr |
|
23 |
22
|
oveq2d |
|
24 |
|
oveq1 |
|
25 |
24
|
eqeq1d |
|
26 |
4
|
ralrimiva |
|
27 |
26
|
adantr |
|
28 |
|
eluzp1m1 |
|
29 |
19 28
|
sylan |
|
30 |
|
fzssp1 |
|
31 |
10
|
zcnd |
|
32 |
|
ax-1cn |
|
33 |
|
npcan |
|
34 |
31 32 33
|
sylancl |
|
35 |
34
|
oveq2d |
|
36 |
30 35
|
sseqtrid |
|
37 |
|
elfzuz3 |
|
38 |
5 37
|
syl |
|
39 |
|
fzss2 |
|
40 |
38 39
|
syl |
|
41 |
36 40
|
sstrd |
|
42 |
41
|
adantr |
|
43 |
42
|
sselda |
|
44 |
2
|
adantlr |
|
45 |
43 44
|
syldan |
|
46 |
1
|
adantlr |
|
47 |
29 45 46
|
seqcl |
|
48 |
25 27 47
|
rspcdva |
|
49 |
23 48
|
eqtrd |
|
50 |
21 49
|
eqtrd |
|
51 |
50
|
ex |
|
52 |
|
uzp1 |
|
53 |
9 52
|
syl |
|
54 |
17 51 53
|
mpjaod |
|
55 |
54 7
|
eqtr4d |
|
56 |
|
eqidd |
|
57 |
9 55 38 56
|
seqfveq2 |
|
58 |
|
fvex |
|
59 |
58
|
elsn |
|
60 |
7 59
|
sylibr |
|
61 |
|
simprl |
|
62 |
|
velsn |
|
63 |
61 62
|
sylib |
|
64 |
63
|
oveq1d |
|
65 |
|
oveq2 |
|
66 |
65
|
eqeq1d |
|
67 |
3
|
ralrimiva |
|
68 |
67
|
adantr |
|
69 |
|
simprr |
|
70 |
66 68 69
|
rspcdva |
|
71 |
64 70
|
eqtrd |
|
72 |
|
ovex |
|
73 |
72
|
elsn |
|
74 |
71 73
|
sylibr |
|
75 |
|
peano2uz |
|
76 |
9 75
|
syl |
|
77 |
|
fzss1 |
|
78 |
76 77
|
syl |
|
79 |
78
|
sselda |
|
80 |
79 2
|
syldan |
|
81 |
60 74 38 80
|
seqcl2 |
|
82 |
|
elsni |
|
83 |
81 82
|
syl |
|
84 |
57 83
|
eqtrd |
|