| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqhomo.1 |
|
| 2 |
|
seqhomo.2 |
|
| 3 |
|
seqz.3 |
|
| 4 |
|
seqz.4 |
|
| 5 |
|
seqz.5 |
|
| 6 |
|
seqz.6 |
|
| 7 |
|
seqz.7 |
|
| 8 |
|
elfzuz |
|
| 9 |
5 8
|
syl |
|
| 10 |
5
|
elfzelzd |
|
| 11 |
|
seq1 |
|
| 12 |
10 11
|
syl |
|
| 13 |
12 7
|
eqtrd |
|
| 14 |
|
seqeq1 |
|
| 15 |
14
|
fveq1d |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
13 16
|
syl5ibcom |
|
| 18 |
|
eluzel2 |
|
| 19 |
9 18
|
syl |
|
| 20 |
|
seqm1 |
|
| 21 |
19 20
|
sylan |
|
| 22 |
7
|
adantr |
|
| 23 |
22
|
oveq2d |
|
| 24 |
|
oveq1 |
|
| 25 |
24
|
eqeq1d |
|
| 26 |
4
|
ralrimiva |
|
| 27 |
26
|
adantr |
|
| 28 |
|
eluzp1m1 |
|
| 29 |
19 28
|
sylan |
|
| 30 |
|
fzssp1 |
|
| 31 |
10
|
zcnd |
|
| 32 |
|
ax-1cn |
|
| 33 |
|
npcan |
|
| 34 |
31 32 33
|
sylancl |
|
| 35 |
34
|
oveq2d |
|
| 36 |
30 35
|
sseqtrid |
|
| 37 |
|
elfzuz3 |
|
| 38 |
5 37
|
syl |
|
| 39 |
|
fzss2 |
|
| 40 |
38 39
|
syl |
|
| 41 |
36 40
|
sstrd |
|
| 42 |
41
|
adantr |
|
| 43 |
42
|
sselda |
|
| 44 |
2
|
adantlr |
|
| 45 |
43 44
|
syldan |
|
| 46 |
1
|
adantlr |
|
| 47 |
29 45 46
|
seqcl |
|
| 48 |
25 27 47
|
rspcdva |
|
| 49 |
23 48
|
eqtrd |
|
| 50 |
21 49
|
eqtrd |
|
| 51 |
50
|
ex |
|
| 52 |
|
uzp1 |
|
| 53 |
9 52
|
syl |
|
| 54 |
17 51 53
|
mpjaod |
|
| 55 |
54 7
|
eqtr4d |
|
| 56 |
|
eqidd |
|
| 57 |
9 55 38 56
|
seqfveq2 |
|
| 58 |
|
fvex |
|
| 59 |
58
|
elsn |
|
| 60 |
7 59
|
sylibr |
|
| 61 |
|
simprl |
|
| 62 |
|
velsn |
|
| 63 |
61 62
|
sylib |
|
| 64 |
63
|
oveq1d |
|
| 65 |
|
oveq2 |
|
| 66 |
65
|
eqeq1d |
|
| 67 |
3
|
ralrimiva |
|
| 68 |
67
|
adantr |
|
| 69 |
|
simprr |
|
| 70 |
66 68 69
|
rspcdva |
|
| 71 |
64 70
|
eqtrd |
|
| 72 |
|
ovex |
|
| 73 |
72
|
elsn |
|
| 74 |
71 73
|
sylibr |
|
| 75 |
|
peano2uz |
|
| 76 |
9 75
|
syl |
|
| 77 |
|
fzss1 |
|
| 78 |
76 77
|
syl |
|
| 79 |
78
|
sselda |
|
| 80 |
79 2
|
syldan |
|
| 81 |
60 74 38 80
|
seqcl2 |
|
| 82 |
|
elsni |
|
| 83 |
81 82
|
syl |
|
| 84 |
57 83
|
eqtrd |
|