Metamath Proof Explorer


Theorem ser0

Description: The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013) (Revised by Mario Carneiro, 15-Dec-2014)

Ref Expression
Hypothesis ser0.1 Z = M
Assertion ser0 N Z seq M + Z × 0 N = 0

Proof

Step Hyp Ref Expression
1 ser0.1 Z = M
2 00id 0 + 0 = 0
3 2 a1i N Z 0 + 0 = 0
4 1 eleq2i N Z N M
5 4 biimpi N Z N M
6 0cn 0
7 elfzuz k M N k M
8 7 1 eleqtrrdi k M N k Z
9 8 adantl N Z k M N k Z
10 fvconst2g 0 k Z Z × 0 k = 0
11 6 9 10 sylancr N Z k M N Z × 0 k = 0
12 3 5 11 seqid3 N Z seq M + Z × 0 N = 0