Metamath Proof Explorer


Theorem ser0f

Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014)

Ref Expression
Hypothesis ser0.1 Z = M
Assertion ser0f M seq M + Z × 0 = Z × 0

Proof

Step Hyp Ref Expression
1 ser0.1 Z = M
2 1 ser0 k Z seq M + Z × 0 k = 0
3 c0ex 0 V
4 3 fvconst2 k Z Z × 0 k = 0
5 2 4 eqtr4d k Z seq M + Z × 0 k = Z × 0 k
6 5 rgen k Z seq M + Z × 0 k = Z × 0 k
7 seqfn M seq M + Z × 0 Fn M
8 1 fneq2i seq M + Z × 0 Fn Z seq M + Z × 0 Fn M
9 7 8 sylibr M seq M + Z × 0 Fn Z
10 3 fconst Z × 0 : Z 0
11 ffn Z × 0 : Z 0 Z × 0 Fn Z
12 10 11 ax-mp Z × 0 Fn Z
13 eqfnfv seq M + Z × 0 Fn Z Z × 0 Fn Z seq M + Z × 0 = Z × 0 k Z seq M + Z × 0 k = Z × 0 k
14 9 12 13 sylancl M seq M + Z × 0 = Z × 0 k Z seq M + Z × 0 k = Z × 0 k
15 6 14 mpbiri M seq M + Z × 0 = Z × 0