Metamath Proof Explorer


Theorem ser1const

Description: Value of the partial series sum of a constant function. (Contributed by NM, 8-Aug-2005) (Revised by Mario Carneiro, 16-Feb-2014)

Ref Expression
Assertion ser1const A N seq 1 + × A N = N A

Proof

Step Hyp Ref Expression
1 fveq2 j = 1 seq 1 + × A j = seq 1 + × A 1
2 oveq1 j = 1 j A = 1 A
3 1 2 eqeq12d j = 1 seq 1 + × A j = j A seq 1 + × A 1 = 1 A
4 3 imbi2d j = 1 A seq 1 + × A j = j A A seq 1 + × A 1 = 1 A
5 fveq2 j = k seq 1 + × A j = seq 1 + × A k
6 oveq1 j = k j A = k A
7 5 6 eqeq12d j = k seq 1 + × A j = j A seq 1 + × A k = k A
8 7 imbi2d j = k A seq 1 + × A j = j A A seq 1 + × A k = k A
9 fveq2 j = k + 1 seq 1 + × A j = seq 1 + × A k + 1
10 oveq1 j = k + 1 j A = k + 1 A
11 9 10 eqeq12d j = k + 1 seq 1 + × A j = j A seq 1 + × A k + 1 = k + 1 A
12 11 imbi2d j = k + 1 A seq 1 + × A j = j A A seq 1 + × A k + 1 = k + 1 A
13 fveq2 j = N seq 1 + × A j = seq 1 + × A N
14 oveq1 j = N j A = N A
15 13 14 eqeq12d j = N seq 1 + × A j = j A seq 1 + × A N = N A
16 15 imbi2d j = N A seq 1 + × A j = j A A seq 1 + × A N = N A
17 1z 1
18 1nn 1
19 fvconst2g A 1 × A 1 = A
20 18 19 mpan2 A × A 1 = A
21 mulid2 A 1 A = A
22 20 21 eqtr4d A × A 1 = 1 A
23 17 22 seq1i A seq 1 + × A 1 = 1 A
24 oveq1 seq 1 + × A k = k A seq 1 + × A k + A = k A + A
25 seqp1 k 1 seq 1 + × A k + 1 = seq 1 + × A k + × A k + 1
26 nnuz = 1
27 25 26 eleq2s k seq 1 + × A k + 1 = seq 1 + × A k + × A k + 1
28 27 adantl A k seq 1 + × A k + 1 = seq 1 + × A k + × A k + 1
29 peano2nn k k + 1
30 fvconst2g A k + 1 × A k + 1 = A
31 29 30 sylan2 A k × A k + 1 = A
32 31 oveq2d A k seq 1 + × A k + × A k + 1 = seq 1 + × A k + A
33 28 32 eqtrd A k seq 1 + × A k + 1 = seq 1 + × A k + A
34 nncn k k
35 id A A
36 ax-1cn 1
37 adddir k 1 A k + 1 A = k A + 1 A
38 36 37 mp3an2 k A k + 1 A = k A + 1 A
39 34 35 38 syl2anr A k k + 1 A = k A + 1 A
40 21 adantr A k 1 A = A
41 40 oveq2d A k k A + 1 A = k A + A
42 39 41 eqtrd A k k + 1 A = k A + A
43 33 42 eqeq12d A k seq 1 + × A k + 1 = k + 1 A seq 1 + × A k + A = k A + A
44 24 43 syl5ibr A k seq 1 + × A k = k A seq 1 + × A k + 1 = k + 1 A
45 44 expcom k A seq 1 + × A k = k A seq 1 + × A k + 1 = k + 1 A
46 45 a2d k A seq 1 + × A k = k A A seq 1 + × A k + 1 = k + 1 A
47 4 8 12 16 23 46 nnind N A seq 1 + × A N = N A
48 47 impcom A N seq 1 + × A N = N A