Metamath Proof Explorer


Theorem seradd

Description: The sum of two infinite series. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 26-May-2014)

Ref Expression
Hypotheses seradd.1 φ N M
seradd.2 φ k M N F k
seradd.3 φ k M N G k
seradd.4 φ k M N H k = F k + G k
Assertion seradd φ seq M + H N = seq M + F N + seq M + G N

Proof

Step Hyp Ref Expression
1 seradd.1 φ N M
2 seradd.2 φ k M N F k
3 seradd.3 φ k M N G k
4 seradd.4 φ k M N H k = F k + G k
5 addcl x y x + y
6 5 adantl φ x y x + y
7 addcom x y x + y = y + x
8 7 adantl φ x y x + y = y + x
9 addass x y z x + y + z = x + y + z
10 9 adantl φ x y z x + y + z = x + y + z
11 6 8 10 1 2 3 4 seqcaopr φ seq M + H N = seq M + F N + seq M + G N