Metamath Proof Explorer


Theorem serclim0

Description: The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008) (Proof shortened by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion serclim0 M seq M + M × 0 0

Proof

Step Hyp Ref Expression
1 eqid M = M
2 1 ser0f M seq M + M × 0 = M × 0
3 0cn 0
4 ssid M M
5 fvex M V
6 4 5 climconst2 0 M M × 0 0
7 3 6 mpan M M × 0 0
8 2 7 eqbrtrd M seq M + M × 0 0