Metamath Proof Explorer


Theorem serf

Description: An infinite series of complex terms is a function from NN to CC . (Contributed by NM, 18-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses serf.1 Z = M
serf.2 φ M
serf.3 φ k Z F k
Assertion serf φ seq M + F : Z

Proof

Step Hyp Ref Expression
1 serf.1 Z = M
2 serf.2 φ M
3 serf.3 φ k Z F k
4 addcl k x k + x
5 4 adantl φ k x k + x
6 1 2 3 5 seqf φ seq M + F : Z