Step |
Hyp |
Ref |
Expression |
1 |
|
caucvgb.1 |
|
2 |
|
serf0.2 |
|
3 |
|
serf0.3 |
|
4 |
|
serf0.4 |
|
5 |
|
serf0.5 |
|
6 |
1
|
caucvgb |
|
7 |
2 4 6
|
syl2anc |
|
8 |
4 7
|
mpbid |
|
9 |
1
|
cau3 |
|
10 |
8 9
|
sylib |
|
11 |
1
|
peano2uzs |
|
12 |
11
|
adantl |
|
13 |
|
eluzelz |
|
14 |
|
uzid |
|
15 |
|
peano2uz |
|
16 |
|
fveq2 |
|
17 |
16
|
oveq2d |
|
18 |
17
|
fveq2d |
|
19 |
18
|
breq1d |
|
20 |
19
|
rspcv |
|
21 |
13 14 15 20
|
4syl |
|
22 |
21
|
adantld |
|
23 |
22
|
ralimia |
|
24 |
|
simpr |
|
25 |
24 1
|
eleqtrdi |
|
26 |
|
eluzelz |
|
27 |
25 26
|
syl |
|
28 |
|
eluzp1m1 |
|
29 |
27 28
|
sylan |
|
30 |
|
fveq2 |
|
31 |
|
fvoveq1 |
|
32 |
30 31
|
oveq12d |
|
33 |
32
|
fveq2d |
|
34 |
33
|
breq1d |
|
35 |
34
|
rspcv |
|
36 |
29 35
|
syl |
|
37 |
1 2 5
|
serf |
|
38 |
37
|
ad2antrr |
|
39 |
1
|
uztrn2 |
|
40 |
24 29 39
|
syl2an2r |
|
41 |
38 40
|
ffvelrnd |
|
42 |
1
|
uztrn2 |
|
43 |
12 42
|
sylan |
|
44 |
38 43
|
ffvelrnd |
|
45 |
41 44
|
abssubd |
|
46 |
|
eluzelz |
|
47 |
46
|
adantl |
|
48 |
47
|
zcnd |
|
49 |
|
ax-1cn |
|
50 |
|
npcan |
|
51 |
48 49 50
|
sylancl |
|
52 |
51
|
fveq2d |
|
53 |
52
|
oveq2d |
|
54 |
53
|
fveq2d |
|
55 |
2
|
ad2antrr |
|
56 |
|
eluzp1p1 |
|
57 |
25 56
|
syl |
|
58 |
|
eqid |
|
59 |
58
|
uztrn2 |
|
60 |
57 59
|
sylan |
|
61 |
|
seqm1 |
|
62 |
55 60 61
|
syl2anc |
|
63 |
62
|
oveq1d |
|
64 |
5
|
adantlr |
|
65 |
43 64
|
syldan |
|
66 |
41 65
|
pncan2d |
|
67 |
63 66
|
eqtr2d |
|
68 |
67
|
fveq2d |
|
69 |
45 54 68
|
3eqtr4d |
|
70 |
69
|
breq1d |
|
71 |
36 70
|
sylibd |
|
72 |
71
|
ralrimdva |
|
73 |
23 72
|
syl5 |
|
74 |
|
fveq2 |
|
75 |
74
|
raleqdv |
|
76 |
75
|
rspcev |
|
77 |
12 73 76
|
syl6an |
|
78 |
77
|
rexlimdva |
|
79 |
78
|
ralimdv |
|
80 |
10 79
|
mpd |
|
81 |
|
eqidd |
|
82 |
1 2 3 81 5
|
clim0c |
|
83 |
80 82
|
mpbird |
|