Metamath Proof Explorer


Theorem serf0

Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005) (Revised by Mario Carneiro, 16-Feb-2014)

Ref Expression
Hypotheses caucvgb.1 Z = M
serf0.2 φ M
serf0.3 φ F V
serf0.4 φ seq M + F dom
serf0.5 φ k Z F k
Assertion serf0 φ F 0

Proof

Step Hyp Ref Expression
1 caucvgb.1 Z = M
2 serf0.2 φ M
3 serf0.3 φ F V
4 serf0.4 φ seq M + F dom
5 serf0.5 φ k Z F k
6 1 caucvgb M seq M + F dom seq M + F dom x + j Z m j seq M + F m seq M + F m seq M + F j < x
7 2 4 6 syl2anc φ seq M + F dom x + j Z m j seq M + F m seq M + F m seq M + F j < x
8 4 7 mpbid φ x + j Z m j seq M + F m seq M + F m seq M + F j < x
9 1 cau3 x + j Z m j seq M + F m seq M + F m seq M + F j < x x + j Z m j seq M + F m k m seq M + F m seq M + F k < x
10 8 9 sylib φ x + j Z m j seq M + F m k m seq M + F m seq M + F k < x
11 1 peano2uzs j Z j + 1 Z
12 11 adantl φ j Z j + 1 Z
13 eluzelz m j m
14 uzid m m m
15 peano2uz m m m + 1 m
16 fveq2 k = m + 1 seq M + F k = seq M + F m + 1
17 16 oveq2d k = m + 1 seq M + F m seq M + F k = seq M + F m seq M + F m + 1
18 17 fveq2d k = m + 1 seq M + F m seq M + F k = seq M + F m seq M + F m + 1
19 18 breq1d k = m + 1 seq M + F m seq M + F k < x seq M + F m seq M + F m + 1 < x
20 19 rspcv m + 1 m k m seq M + F m seq M + F k < x seq M + F m seq M + F m + 1 < x
21 13 14 15 20 4syl m j k m seq M + F m seq M + F k < x seq M + F m seq M + F m + 1 < x
22 21 adantld m j seq M + F m k m seq M + F m seq M + F k < x seq M + F m seq M + F m + 1 < x
23 22 ralimia m j seq M + F m k m seq M + F m seq M + F k < x m j seq M + F m seq M + F m + 1 < x
24 simpr φ j Z j Z
25 24 1 eleqtrdi φ j Z j M
26 eluzelz j M j
27 25 26 syl φ j Z j
28 eluzp1m1 j k j + 1 k 1 j
29 27 28 sylan φ j Z k j + 1 k 1 j
30 fveq2 m = k 1 seq M + F m = seq M + F k 1
31 fvoveq1 m = k 1 seq M + F m + 1 = seq M + F k - 1 + 1
32 30 31 oveq12d m = k 1 seq M + F m seq M + F m + 1 = seq M + F k 1 seq M + F k - 1 + 1
33 32 fveq2d m = k 1 seq M + F m seq M + F m + 1 = seq M + F k 1 seq M + F k - 1 + 1
34 33 breq1d m = k 1 seq M + F m seq M + F m + 1 < x seq M + F k 1 seq M + F k - 1 + 1 < x
35 34 rspcv k 1 j m j seq M + F m seq M + F m + 1 < x seq M + F k 1 seq M + F k - 1 + 1 < x
36 29 35 syl φ j Z k j + 1 m j seq M + F m seq M + F m + 1 < x seq M + F k 1 seq M + F k - 1 + 1 < x
37 1 2 5 serf φ seq M + F : Z
38 37 ad2antrr φ j Z k j + 1 seq M + F : Z
39 1 uztrn2 j Z k 1 j k 1 Z
40 24 29 39 syl2an2r φ j Z k j + 1 k 1 Z
41 38 40 ffvelrnd φ j Z k j + 1 seq M + F k 1
42 1 uztrn2 j + 1 Z k j + 1 k Z
43 12 42 sylan φ j Z k j + 1 k Z
44 38 43 ffvelrnd φ j Z k j + 1 seq M + F k
45 41 44 abssubd φ j Z k j + 1 seq M + F k 1 seq M + F k = seq M + F k seq M + F k 1
46 eluzelz k j + 1 k
47 46 adantl φ j Z k j + 1 k
48 47 zcnd φ j Z k j + 1 k
49 ax-1cn 1
50 npcan k 1 k - 1 + 1 = k
51 48 49 50 sylancl φ j Z k j + 1 k - 1 + 1 = k
52 51 fveq2d φ j Z k j + 1 seq M + F k - 1 + 1 = seq M + F k
53 52 oveq2d φ j Z k j + 1 seq M + F k 1 seq M + F k - 1 + 1 = seq M + F k 1 seq M + F k
54 53 fveq2d φ j Z k j + 1 seq M + F k 1 seq M + F k - 1 + 1 = seq M + F k 1 seq M + F k
55 2 ad2antrr φ j Z k j + 1 M
56 eluzp1p1 j M j + 1 M + 1
57 25 56 syl φ j Z j + 1 M + 1
58 eqid M + 1 = M + 1
59 58 uztrn2 j + 1 M + 1 k j + 1 k M + 1
60 57 59 sylan φ j Z k j + 1 k M + 1
61 seqm1 M k M + 1 seq M + F k = seq M + F k 1 + F k
62 55 60 61 syl2anc φ j Z k j + 1 seq M + F k = seq M + F k 1 + F k
63 62 oveq1d φ j Z k j + 1 seq M + F k seq M + F k 1 = seq M + F k 1 + F k - seq M + F k 1
64 5 adantlr φ j Z k Z F k
65 43 64 syldan φ j Z k j + 1 F k
66 41 65 pncan2d φ j Z k j + 1 seq M + F k 1 + F k - seq M + F k 1 = F k
67 63 66 eqtr2d φ j Z k j + 1 F k = seq M + F k seq M + F k 1
68 67 fveq2d φ j Z k j + 1 F k = seq M + F k seq M + F k 1
69 45 54 68 3eqtr4d φ j Z k j + 1 seq M + F k 1 seq M + F k - 1 + 1 = F k
70 69 breq1d φ j Z k j + 1 seq M + F k 1 seq M + F k - 1 + 1 < x F k < x
71 36 70 sylibd φ j Z k j + 1 m j seq M + F m seq M + F m + 1 < x F k < x
72 71 ralrimdva φ j Z m j seq M + F m seq M + F m + 1 < x k j + 1 F k < x
73 23 72 syl5 φ j Z m j seq M + F m k m seq M + F m seq M + F k < x k j + 1 F k < x
74 fveq2 n = j + 1 n = j + 1
75 74 raleqdv n = j + 1 k n F k < x k j + 1 F k < x
76 75 rspcev j + 1 Z k j + 1 F k < x n Z k n F k < x
77 12 73 76 syl6an φ j Z m j seq M + F m k m seq M + F m seq M + F k < x n Z k n F k < x
78 77 rexlimdva φ j Z m j seq M + F m k m seq M + F m seq M + F k < x n Z k n F k < x
79 78 ralimdv φ x + j Z m j seq M + F m k m seq M + F m seq M + F k < x x + n Z k n F k < x
80 10 79 mpd φ x + n Z k n F k < x
81 eqidd φ k Z F k = F k
82 1 2 3 81 5 clim0c φ F 0 x + n Z k n F k < x
83 80 82 mpbird φ F 0